HAYFIELD STAGE 5

352 RIPLEY ROAD, RIPLEY FOR 'RIPLEY PROJECTS PTY LTD'

DRAWING LIST

17-0195-100 COVER PLAN

EARTHWORKS, ROADWORKS AND DRAINAGE

17-0195-101 **GENERAL NOTES** BULK EARTHWORKS LAYOUT PLAN 17-0195-103 BULK EARTHWORKS TYPICAL SECTIONS 17-0195-104 ROADWORKS AND DRAINAGE LAYOUT PLAN 17-0195-105 SURVEY SETOUT AND KERB TYPES LAYOUT PLAN 17-0195-106 ROAD 12 LONGITUDINAL SECTION 17-0195-107 ROAD 12 CROSS SECTIONS SHEET 1 OF 3 ROAD 12 CROSS SECTIONS SHEET 2 OF 3 17-0195-108 17-0195-109 ROAD 12 CROSS SECTIONS SHEET 3 OF 3 ROAD 13 LONGITUDINAL SECTION AND CROSS SECTIONS SHEET 1 OF 2 17-0195-110 ROAD 13 CROSS SECTIONS SHEET 2 OF 2 POLLEN STREET LONGITUDINAL SECTION AND CROSS SECTIONS 17-0195-112 BASIN ACCESS DRIVEWAY LONGITUDINAL SECTION AND CROSS SECTIONS 17-0195-113

17-0195-114 INTERSECTION DETAILS LAYOUT PLAN SHEET 1 OF 2 17-0195-115 INTERSECTION DETAILS LAYOUT PLAN SHEET 2 OF 2

INTERSECTION KERB RETURN LONGITUDINAL SECTIONS 17-0195-116 SIGNS AND LINEMARKING LAYOUT PLAN

17-0195-117 17-0195-118

STORMWATER DRAINAGE CATCHMENT LAYOUT PLAN STORMWATER DRAINAGE LONGITUDINAL SECTIONS SHEET 1 OF 2 17-0195-119

STORMWATER DRAINAGE LONGITUDINAL SECTIONS SHEET 2 OF 2

17-0195-121 STORMWATER DRAINAGE CALCULATIONS TABLE

17-0195-122 STORMWATER DRAINAGE STRUCTURE DETAILS

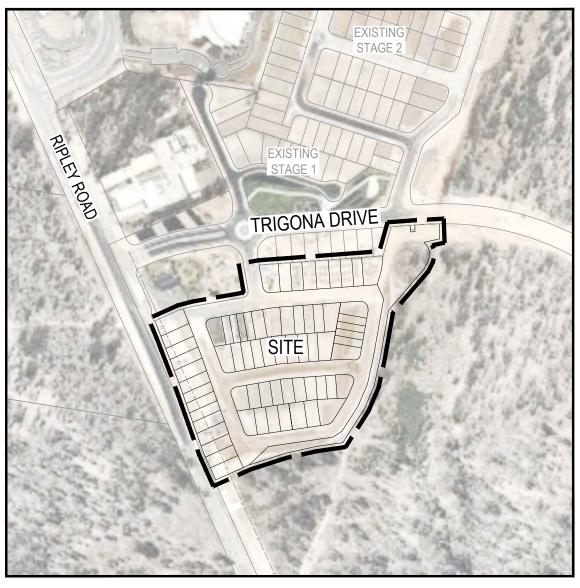
17-0195-123 HAYFIELD RUNNING TRACK DETAIL AND LAYOUT PLAN

STORMWATER QUALITY

BIO RETENTION BASIN LAYOUT PLAN BIO RETENTION BASIN TYPICAL SECTIONS 17-0195-201 BIO RETENTION BASIN TYPICAL NOTES AND DETAILS

SEWERAGE AND WATER RETICULATION

17-0195-300 SEWERAGE RETICULATION COVER PLAN SEWERAGE RETICULATION LAYOUT PLAN 17-0195-301


SEWERAGE RETICULATION LONGITUDINAL SECTIONS - SHEET 1 OF 5 17-0195-303 SEWERAGE RETICULATION LONGITUDINAL SECTIONS - SHEET 2 OF 5 17-0195-304 SEWERAGE RETICULATION LONGITUDINAL SECTIONS - SHEET 3 OF 5 17-0195-305 SEWERAGE RETICULATION LONGITUDINAL SECTIONS - SHEET 4 OF 5

SEWERAGE RETICULATION LONGITUDINAL SECTIONS - SHEET 5 OF 5

WATER RETICULATION COVER PLAN 17-0195-307

17-0195-308 WATER RETICULATION LIVE CONNECTION DETAILS

WATER RETICULATION LAYOUT PLAN 17-0195-309

SCALE 1:2000 (A1)

No. OF LOTS = 68

AREA OF SITE = 4.76 ha

RP DESCRIPTION LOT 3 ON SP 237241

DATUM LEVEL AND LOCATION

PM 57629 RL 53.501 AHD

LOCAL AUTHORITY: IPSWICH CITY COUNCIL

COUNCIL REFERENCE NUMBER: 8736/2017/PDA

THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH:

- VEGETATION MANAGEMENT PLAN
- LANDSCAPE ARCHITECT'S PLANS
- ELECTRICAL, COMMUNICATIONS AND GAS CONSULTANT'S PLANS
- SEDIMENT AND EROSION HAZARD ASSESSMENT
- SAFETY IN DESIGN REPORT

REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS	A	SCALE	CLIENT	PROJECT NAME	DRAWING TITLE		
2	27.04.20 16.06.20	AS AS	AS AS	FOR APPROVAL FOR APPROVAL	ΔC	NOT FOR			RIPLEY PROJECTS	HAYFIELD	COVER	DIAN	
					AD	CONSTRUCTION	PEAKURBAN	1:2000 20 0 20 40 60 80 100 A1	PTY LTD	STAGE 5	COVER	PLAN	
					DESIGN	ANDREW NGO RPEQ 12329	DEVELOPMENT ENGINEERS • ADVISORS		ASSOCIATED CONSULTANT		PROJECT No.	DRAWING No.	REVISION
					MH	FOR AND ON REHALE OF PEAKLIRBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU		SURVEYOR: SURVEY MARK PH: (07) 3188 9020	352 RIPLEY ROAD RIPLEY	17-0195	100	2

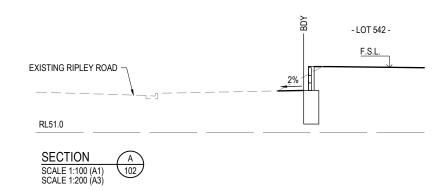
GENERAL NOTES:

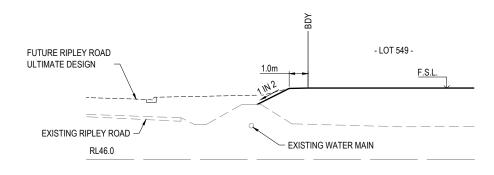
- THE CONTRACTOR SHALL SUPPLY ALL LABOR, MATERIALS, PLANT AND EQUIPMENT TO CONSTRUCT THE WORKS
 AS DOCUMENTED AND STRICTLY IN ACCORDANCE WITH THE RELEVANT AUTHORITY STANDARDS,
 SPECIFICATIONS AND REQUIREMENTS
- 2. THE EXISTING SERVICES THAT ARE SHOWN ON THE DRAWINGS ARE PROVIDED FOR INFORMATION PURPOSES ONLY. NO RESPONSIBILITY IS TAKEN BY THE SUPERINTENDENT OR THE PRINCIPAL FOR INFORMATION THAT HAS BEEN SUPPLIED BY OTHERS, OR ANY EXISTING SERVICES THAT MAY BE PRESENT NOT SHOWN ON THE DRAWINGS. THE CONTRACTOR SHALL VERIFY THE POSITION OF ANY UNDERGROUND SERVICES WITHIN THE AREAS OF WORKS AND SHALL BE RESPONSIBLE FOR MAKING GOOD ANY DAMAGE THERETO. ANY ALTERATION WORKS TO SERVICES WILL BE CARRIED OUT ONLY BY THE SERVICE OWNER AUTHORITY UNLESS APPROVED OTHERWISE.
- 3. ALL CONSTRUCTION ACTIVITIES UNDERTAKEN SHALL COMPLY WITH CURRENT WORKPLACE HEALTH AND SAFETY REQUIREMENTS AND LEGISLATION.
- 4. PRIOR TO COMMENCING WORK, THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL RELEVANT LOCAL ALITHORITY PERMITS.
- 5. THE CONTRACTOR SHALL NOT COMMENCE THE DEMOLITION OF ANY EXISTING BUILDINGS AND/OR STRUCTURES WITHOUT APPROVAL FROM THE SUPERINTENDENT
- 6. THE CONTRACTOR SHALL APPLY INDUSTRY BEST PRACTICE SO WORKS SHALL NOT DISTURB OR AFFECT NEARBY RESIDENTS EITHER BY DUST, NOISE, FLOODING OR DISCONNECTION OF SERVICES. CONTRACTOR TO ENSURE THAT ACCESS AND SERVICES TO EXISTING PROPERTIES ARE AVAILABLE AT ALL TIMES.
- 7. THE CONTRACTOR SHALL VERIFY LEVELS OF EXISTING SERVICE CROSSINGS AND CONNECTION POINTS PRIOR TO COMMENCEMENT OF WORKS AND NOTIFY SUPERINTENDENT OF ANY DISCREPANCIES BETWEEN ACTUAL AND PROPOSED DESIGN LEVELS.
- 8. THESE ENGINEERING DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE APPROVED VEGETATION MANAGEMENT PLAN, WHERE APPLICABLE. WHEN IN DOUBT, ALL EXISTING TREES ARE TO REMAIN UNLESS DIRECTED OTHERWISE.
- 9. HOLD POINT: ONCE THE BASE OF MANHOLES, INSPECTION PITS, GULLIES AND FIELD INLETS FOR STORMWATER DRAINAGE AND SEWER RETICULATION HAVE BEEN POURED, CONSTRUCTION SHALL ONLY RE-COMMENCE ONCE THE SUPERINTENDENT AND/OR ENGINEER HAVE INSPECTED THE WORKS.
- 10. THE CONTRACTOR SHALL NOTE DURING THE COURSE OF THE WORKS WHEN JOINT INSPECTIONS WITH THE AUTHORITY AND THE SUPERINTENDENT ARE REQUIRED. THESE INCLUDE PRE-STARTS, SUBGRADES, PRE-SEALS, CLEARING, AND OTHER SUCH INSPECTIONS AS NOMINATED IN THE APPROVAL AND THE SPECIFICATIONS. THE CONTRACTOR SHALL ENSURE NO WORKS PROCEED PAST THE INSPECTION POINT UNTIL THE JOINT INSPECTION HAS BEEN SUCCESSFULLY COMPLETED.
- 11. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING A SAFE MOVEMENT OF TRAFFIC AND THE PROTECTION OF PERSON AND PROPERTY THROUGH AND AROUND THE SITE. THE CONTRACTOR IS RESPONSIBLE FOR ALL TRAFFIC MANAGEMENT INCLUDING THE DESIGN, CONSTRUCTION, MAINTENANCE AND REMOVAL OF TEMPORARY ROADWAYS, DETOURS, SIGNS, LIGHTS AND BARRIER AS REQUIRED STRICTLY IN ACCORDANCE WITH THE RELEVANT AUTHORITY REQUIREMENTS.

BULK EARTHWORKS NOTES

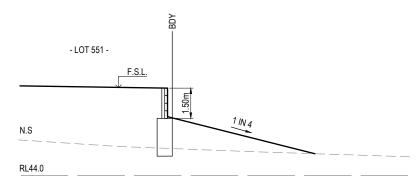
- NOTWITHSTANDING THE EXTENTS OF CUTTING AND FILLING SHOWN ON DRAWINGS, THE SUPERINTENDENT RESERVES THE RIGHT TO ADJUST THE FINISHED SURFACE LEVELS AND EARTHWORKS EXTENTS THROUGH WRITTEN DIRECTION.
- THE CONTRACTOR SHALL UNDERTAKE ALL CLEARING USING INDUSTRY BEST PRACTICE INCLUDING CONSIDERATION OF FAUNA RELOCATION.
- THE CONTRACTOR SHALL UNDERTAKE ALL EARTHWORKS IN ACCORDANCE WITH AS3798-2007 AND LOCAL AUTHORITY REQUIREMENTS. LEVEL 1 SUPERVISION IS REQUIRED.
- 4. THE CONTRACTOR SHALL CONSIDER LOADS GENERATED BY THE EARTHWORKS OPERATIONS SO AS TO AVOID DAMAGE TO ALL PIPES, SERVICES AND STRUCTURES.
- THE EARTHWORKS DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE PROJECT'S SEDIMENT AND EROSION CONTROL PLAN, WHERE APPLICABLE.
- 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PLANNING, DESIGN, CERTIFICATION, IMPLEMENTATION AND MAINTENANCE OF AN EROSION AND SEDIMENT CONTROL PLAN THAT IS COMPLIANT WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION (IECA) GUIDELINE 'BEST PRACTICE EROSION AND SEDIMENT CONTROL' AND RELEVANT COUNCIL POLICIES.

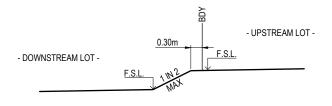
ROADWORKS AND DRAINAGE NOTES

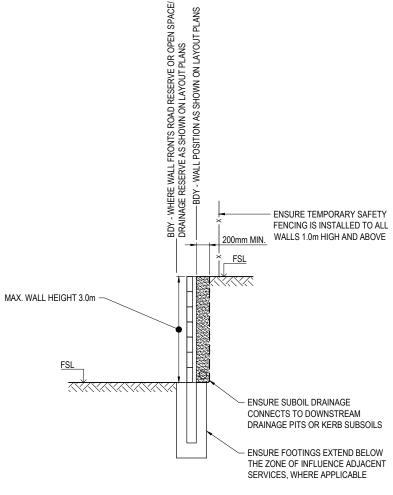

- ALL WORKS SHALL BE IN ACCORDANCE WITH THE RELEVANT AUTHORITY'S STANDARD DRAWINGS, METHODS AND SPECIFICATIONS.
- NOTWITHSTANDING THE EXTENTS OF CUTTING AND FILLING SHOWN ON DRAWINGS, THE SUPERINTENDENT RESERVES THE RIGHT TO ADJUST THE FINISHED SURFACE LEVELS AND EARTHWORKS EXTENTS THROUGH WRITTEN DIRECTION.
- NEW CONSTRUCTION SHALL BE NEATLY JOINED TO EXISTING FORMATION. WHERE REQUIRED, THE EXISTING FORMATION SHALL BE SAW CUT IN ACCORDANCE WITH IPWEAQ STD DRG RS-170. LEVELS AND GRADIENTS AT CONNECTIONS WITH EXISTING WORKS MAY BE VARIED AS REQUIRED TO ACHIEVE A SMOOTH CONNECTION.
- THE CONTRACTOR SHALL UNDERTAKE ALL EARTHWORKS IN ACCORDANCE WITH AS3798-2007 AND LOCAL AUTHORITY REQUIREMENTS. LEVEL 1 SUPERVISION IS REQUIRED.
- THE CONTRACTOR SHALL SUPPLY THE SUPERINTENDENT WITH THE SUBGRADE TEST RESULTS NECESSARY FOR ALL PAVEMENT DESIGN.
- THE CONTRACTOR SHALL ENSURE A MINIMUM OF 75mm TOPSOIL TO ALL VERGE AND BATTER AREAS (AND STABILISATION AS ORDERED)
- 7. THE CONTRACTOR SHALL INSTALL ALL FOOTPATH AND PRAM RAMPS IN COMPLIANCE WITH THE AUTHORITY'S STANDARD DRAWINGS. PRAM RAMPS ARE TO BE LOCATED CLEAR OF DRAINAGE GULLY PITS AND FUTURE DRIVEWAY POSITIONS INDICATED ON THE LAYOUT PLANS.
- THE CONTRACTOR SHALL INSTALL SUBSOIL DRAINS UNDER ALL KERBS AS REQUIRED BY THE LOCAL AUTHORITY'S STANDARDS.
- 9. THE CONTRACTOR SHALL ENSURE THAT ALL RETAINING WALL SUBSOIL DRAINS ARE TO CONNECT TO EITHER KERB ADAPTORS, KERB SUBSOIL DRAINS OR STORMWATER DRAINAGE STRUCTURES. CONTRACTOR TO DEMONSTRATE TO SUPERINTENDENT THAT SUITABLE CONNECTIONS HAVE BEEN PROVIDED FOR ALL WALLS.
- ALL STORMWATER DRAINAGE MATERIALS, BEDDING, JOINTING AND STEP IRON REQUIREMENTS SHALL BE IN ACCORDANCE WITH THE RELEVANT AUTHORITIESS STANDARD DRAWINGS. METHODS AND SPECIFICATIONS.
- 11. THE STORMWATER PIPE CLASSES HAVE BEEN DESIGNED FOR SERVICE LOADS ONLY. THE CONTRACTOR SHALL ASSESS THE SUITABILITY OF MACHINERY USED ON SITE AND THE ANTICIPATED CONSTRUCTION LOADS, AND UPGRADE THE PIPE CLASSES IF NECESSARY IN ACCORDANCE WITH AS3725-2007.
- 12. THE TERM D_{50} DOCUMENTED ON THE DRAWINGS, IN RELATION TO ROCK ARMORING, CORRESPONDS TO THE REQUIRED MEDIAN DIAMETER OF THE PLACED ROCKS. THE ROCKS USED SHALL NOT VARY IN SIZE BY +/- 30% OF THE PROPOSED D_{50} SIZE.


ROOFWATER NOTES

- THE GEOMETRIC CENTRE SHALL BE TAKEN AS THE SETOUT POINT FOR ALL STRUCTURES, UNLESS DETAILED OTHERWISE
- ROOFWATER ALIGNMENT, COVER, MATERIALS, BEDDING, JOINTING AND STEP IRON REQUIREMENTS SHALL BE IN ACCORDANCE WITH THE RELEVANT AUTHORITY'S STANDARD DRAWINGS. METHODS AND SPECIFICATIONS.
- 3. ALL PVC PIPES ARE TO BE MINIMUM CLASS SN8.
- 4. END CAPS SHALL BE INSTALLED ON ENDS OF ALL PIPES AND STUBS.
- 5. WHERE ROOFWATER PIPES ARE ALIGNED BEHIND PROPOSED RETAINING WALLS, THE CONTRACTOR IS TO REFER TO THE SPECIFIC PROJECT DESIGN DETAILS AND CONFIRM CLEARANCES WITH THE SUPERINTENDENT PRIOR TO LAYING OF THE PIPES.
- PROPERTY CONNECTIONS SHALL BE 150Ø UNLESS SHOWN OTHERWISE. THE CONTRACTOR SHALL EXTEND CONNECTIONS A MINIMUM OF 1.0m BEYOND ADJACENT SEWER LINES, WHERE APPLICABLE.
- 7. IN INSTANCES WHERE REAR ALLOTMENT DRAINAGE IS NOT PROVIDED, THE CONTRACTOR SHALL INSTALL A ROOFWATER CONNECTION TO EACH PROPERTY BY ONE OF THE FOLLOWING METHODS, AS SHOWN ON THE LAYOUT PLAN:
- TWO ROOFWATER KERB ADAPTOR 500mm FROM THE DOWNSTREAM BOUNDARY (UNLESS SHOWN ON A DIFFERENT ALIGNMENT). WHERE THERE IS A CONCRETE FOOTPATH, A ROOFWATER PIPE SHALL BE INSTALLED FROM THE PROPERTY BOUNDARY CONNECTED TO THE KERB ADAPTOR AT 1.25% MINIMUM GRADE IN ACCORDANCE WITH COUNCIL'S STANDARDS.
- ONE 150Ø ROOFWATER PIPE CONNECTED TO PROPOSED STORMWATER GULLY PIT OR MANHOLE AT MINIMUM 1.0%


RE	V DATE	DESIGN DR	AWN REVISION DETAILS	DRAWN	STATUS	<u> </u>	SCALE CLIENT	PROJECT NAME	DRAWING TITLE	
2	27.04.20	0 AS A	IS FOR APPROVAL FOR APPROVAL	AS	NOT FOR CONSTRUCTION	PEAKURBAN	RIPLEY PROJECTS PTY LTD	HAYFIELD STAGE 5	GENERAL NOTES	
				DESIGN	APPROVED ANDREW NGO RPEQ 12329	DEVELOPMENT ENGINEERS + ADVISORS				
E				МН	FOR AND ON REHALF OF PEAKURBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU	ASSOCIATED CONSULTANT SURVEYOR: SURVEY MARK PH: (07) 3188 9020	352 RIPLEY ROAD RIPLEY	PROJECT No. DRAWING No. 17-0195 101	REVISION 2




SCALE 1:100 (A1) SCALE 1:200 (A3)

TYPICAL STEP BETWEEN LOTS

(0.00m - 0.50m MAX) 1:50 (A1) 1:100 (A3)

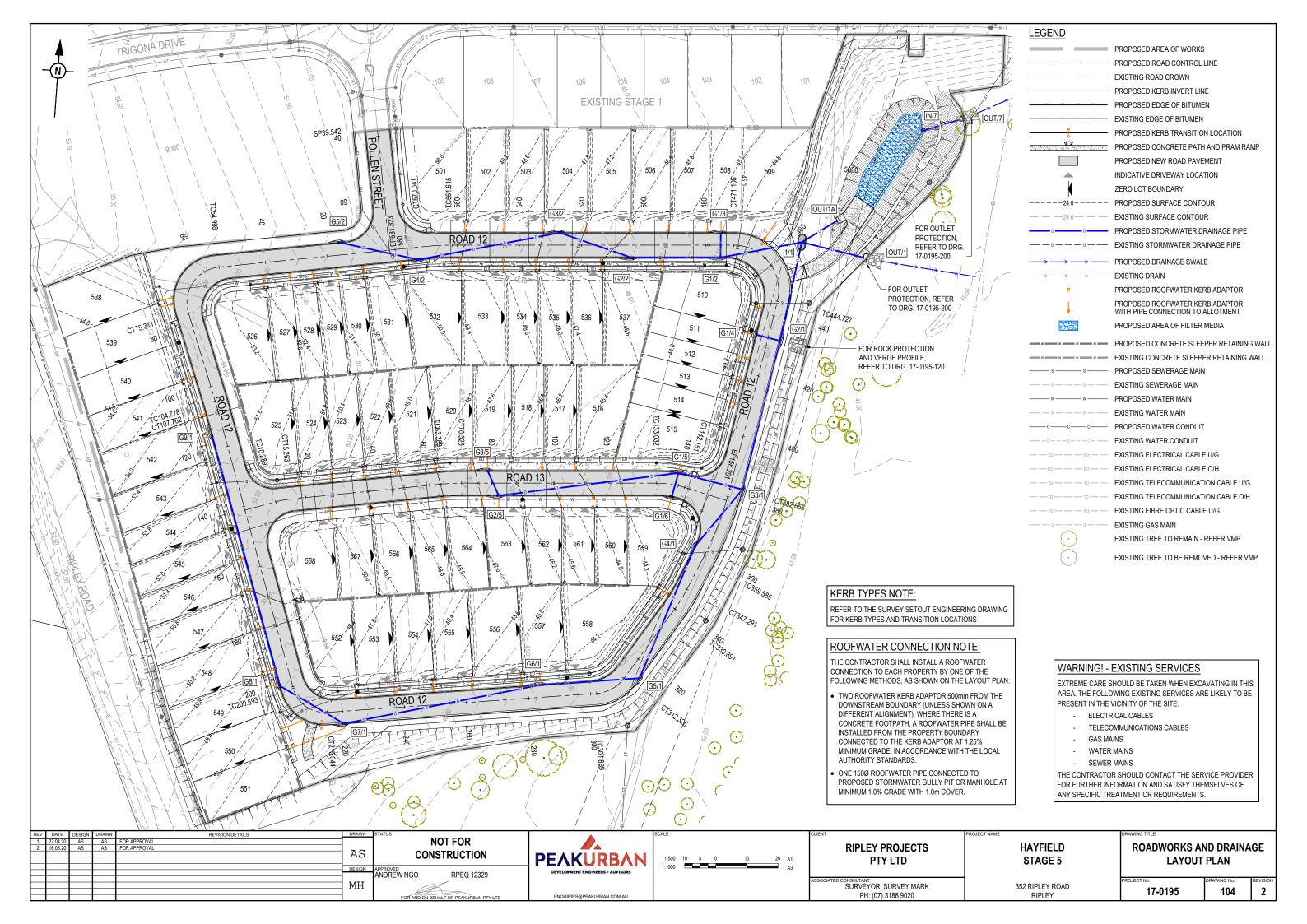
CONCRETE SLEEPER RETAINING WALL TYPICAL DETAIL

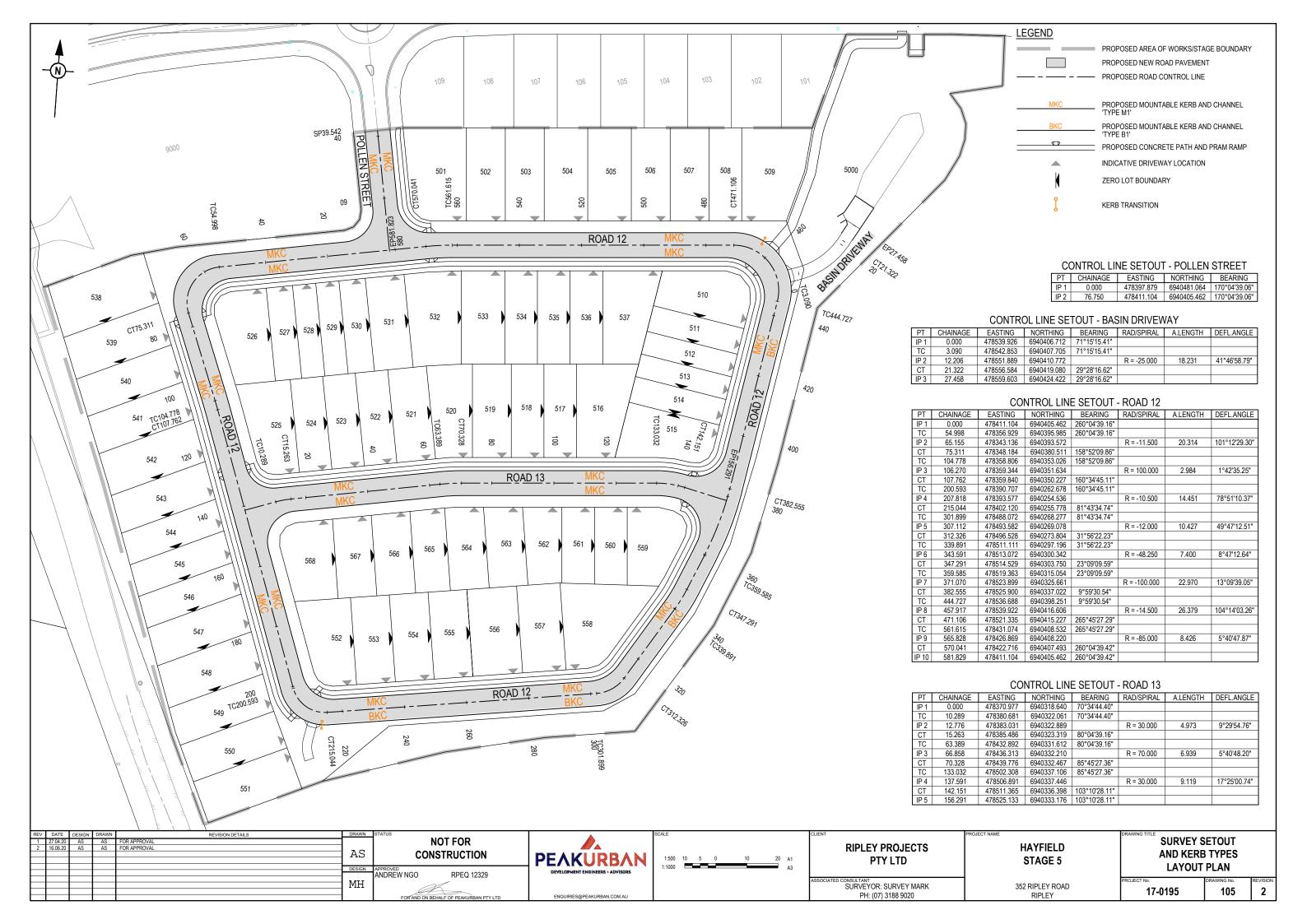
SCALE 1:25 (A1)

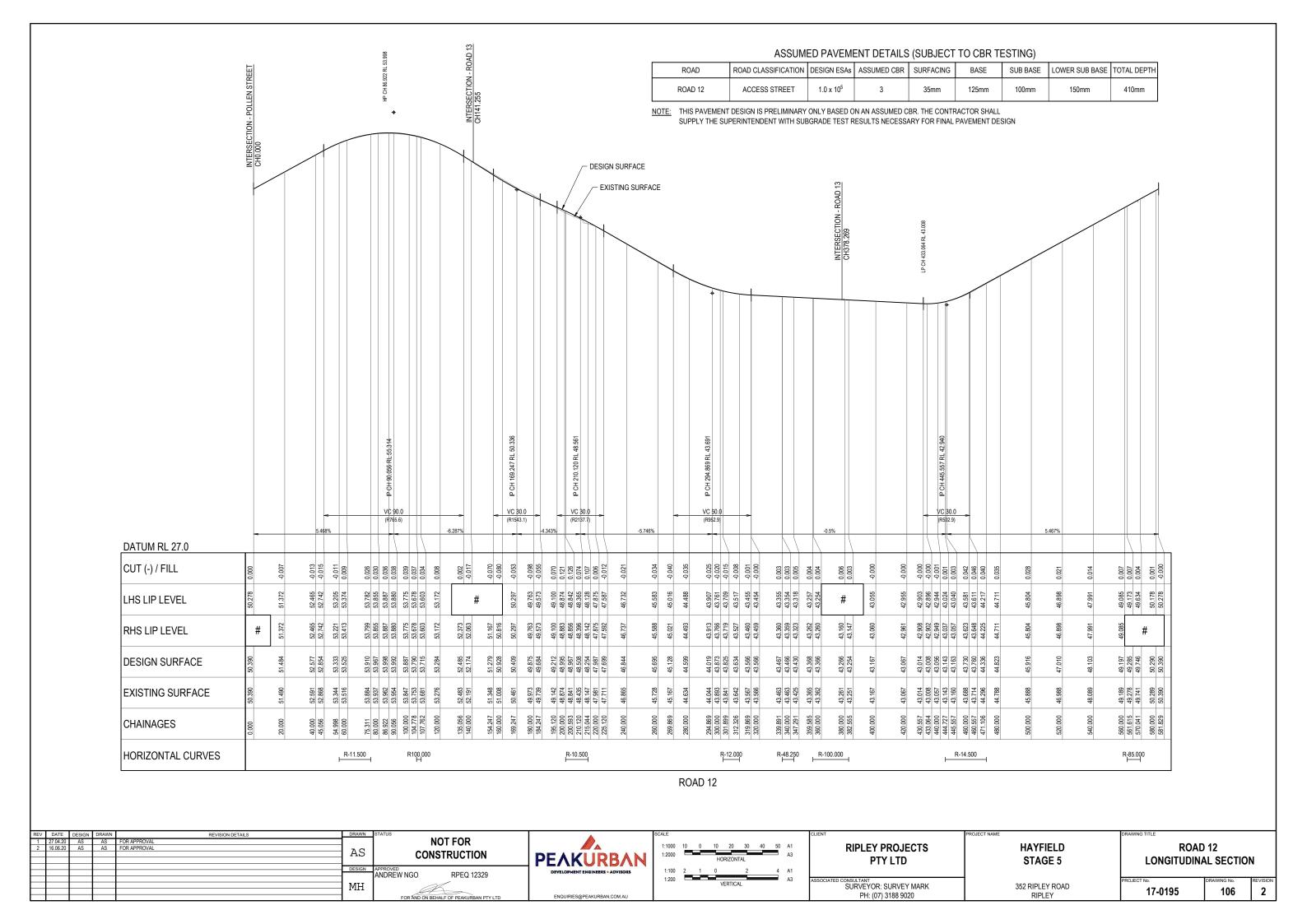
RETAINING WALL NOTES:

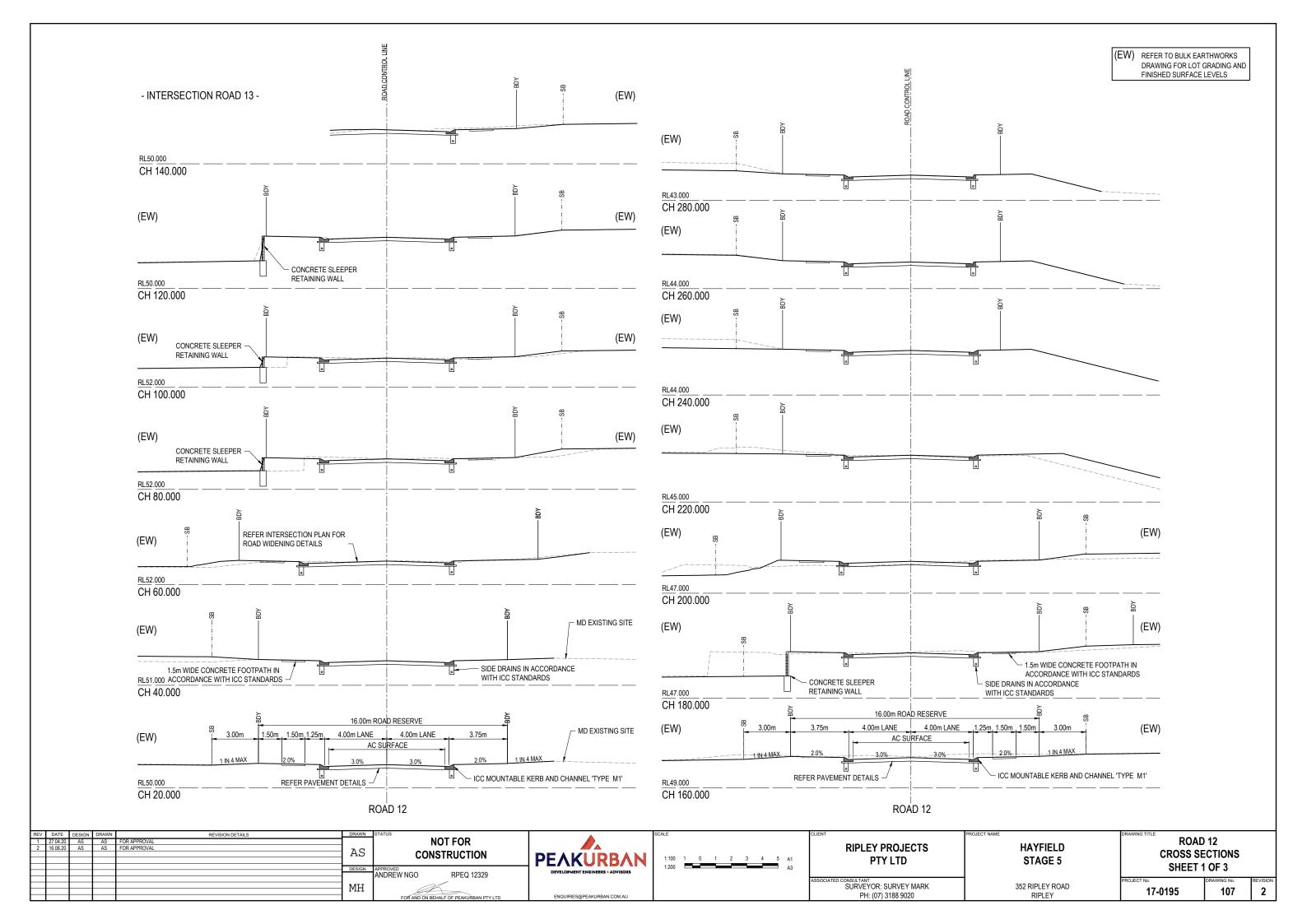
- ALL RETAINING WALLS ARE TO BE DELIVERED UNDER DESIGN AND CONSTRUCTION ARRANGEMENT FORMS 15
 AND 16 CERTIFICATIONS ARE TO BE PROVIDED BY THE CONTRACTOR.
 BUILDING APPROVAL TO BE OBTAINED FOR ALL RELEVANT RETAINING WALLS, PRIOR TO CONSTRUCTING
- RETAINING WALLS
- DESIGN OF WALLS TO CONSIDER ALL LOADS (FENCES, DWELLINGS ETC) AND ASSOCIATED IMPACTS FROM ANY ADJACENT SERVICES FOOTING DEPTHS TO BE EXTENDED AS REQUIRED.
- GEOTECHNICAL CONDITIONS ARE TO BE CONFIRMED AND APPROPRIATELY CONSIDERED FOR ALL WALLS.
- REFER LANDSCAPE DRAWINGS FOR FURTHER INFORMATION ON RETAINING WALLS, PARTICULARLY RELATING TO FINISHES.
- TEMPORARY SAFETY FENCING TO BE INSTALLED BEHIND ALL WALLS 1.0m HIGH AND GREATER.
- CONCRETE SLEEPER RETAINING WALLS ON COMMON BOUNDARY OF ALLOTMENTS AND ROAD RESERVE / OPEN SPACE WHICH ARE VISIBLE FROM PUBLIC SPACE ARE TO BE FINISHED TO FULL DEPTH COLOUR (COFFEE BROWN, TERRACOTTA OR STORM GREY) AND TEXTURED TREATMENT (TIMBER, OR STONE PROFILE AND GRAIN)

EXISTING BOLEHOLES NOTE:

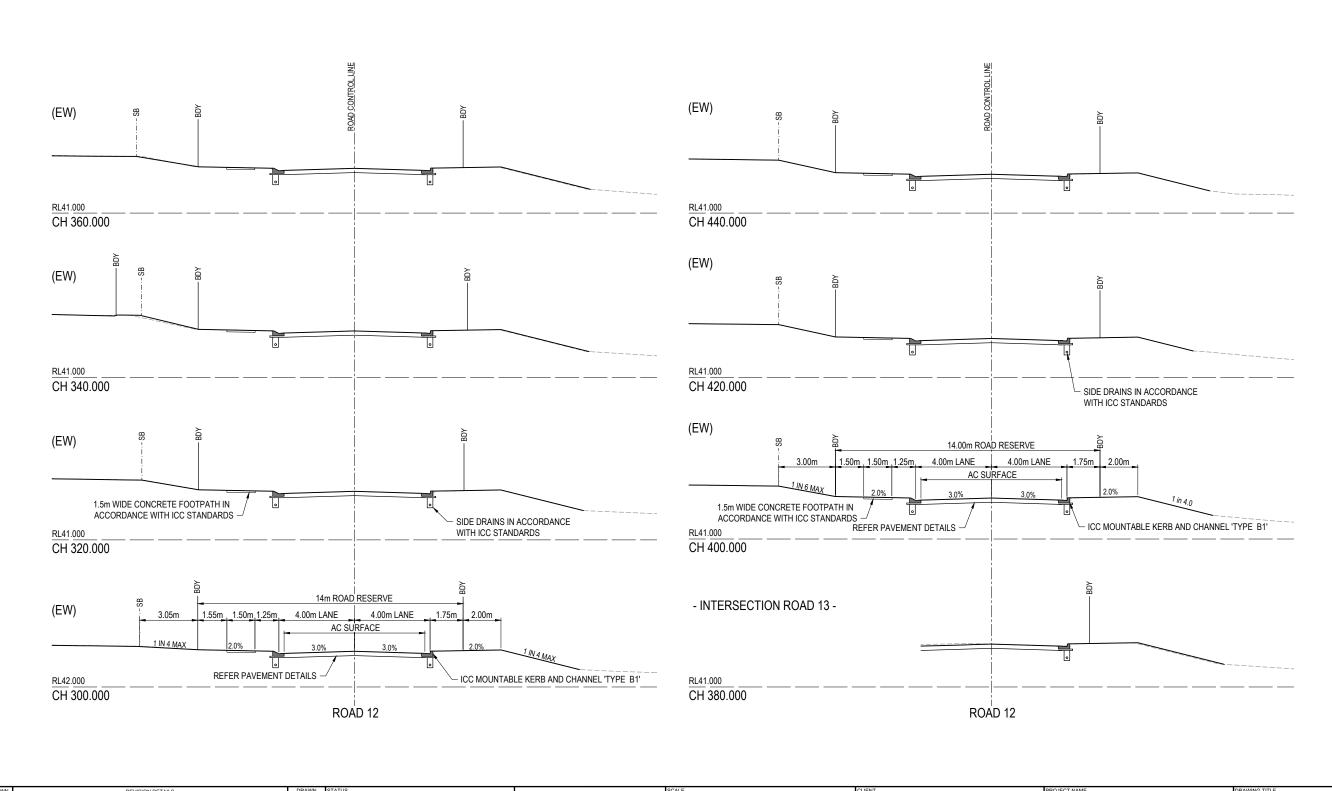

CONTRACTOR TO EXCAVATE, REHABILITATE AND CAP EXISTING BOREHOLES WITH GEOMEMBRANE BARRIER IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS.

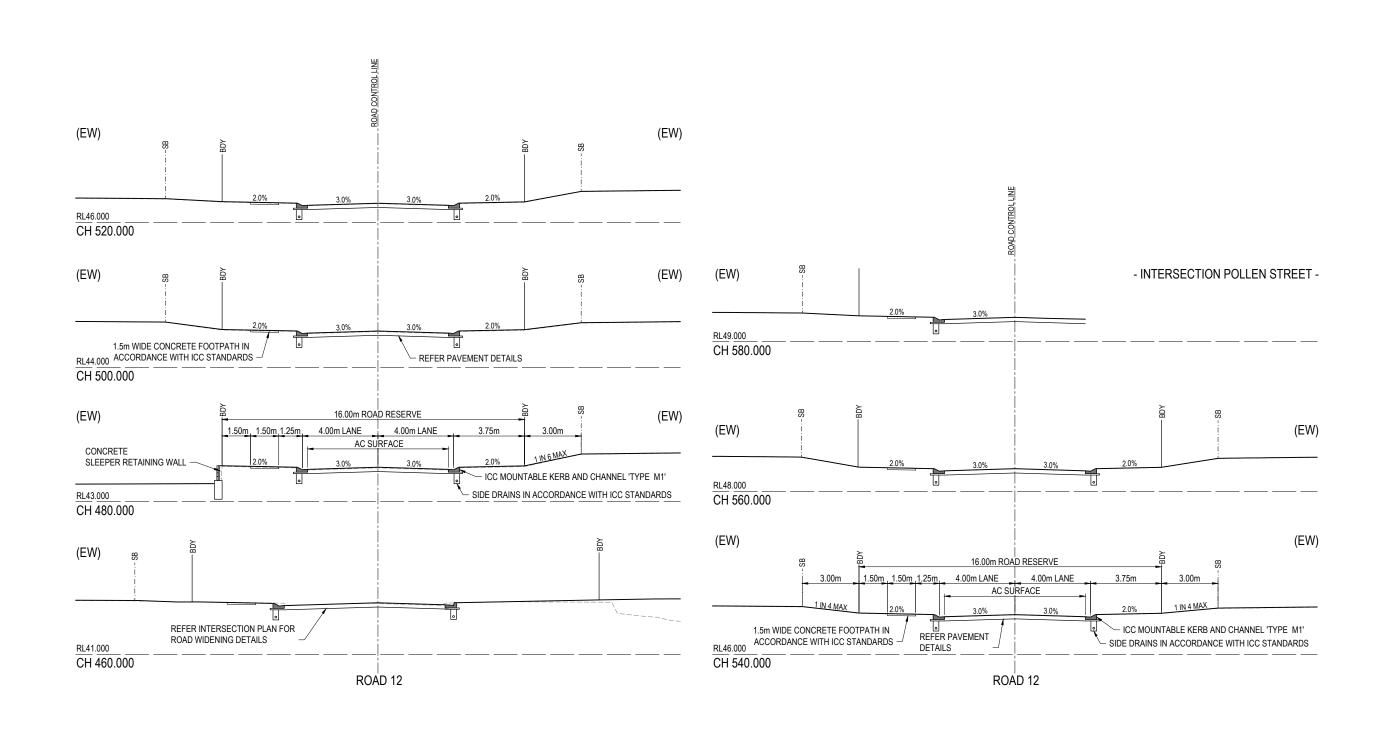

Eν	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS	Γ	
1	27.04.20	AS	AS	FOR APPROVAL	1	NOT FOR		
2	16.06.20	AS	AS	FOR APPROVAL	7.0			
					AS	CONSTRUCTION		
						APPROVED BBE 40000		
					1	ANDREW NGO RPEQ 12329		
					MH			
					1.111			
						FOR AND ON BEHALF OF PEAKURBAN PTY LTD		




SCA	LE									
	1:25	0.25	0	0.25	0.5	0.75	1.0	1.25	A1	
	1:50		_	_					A3	
	1:100	1	0	1	2	3	4	5	A1	
	1:200		_	_	_	_	_		A3	

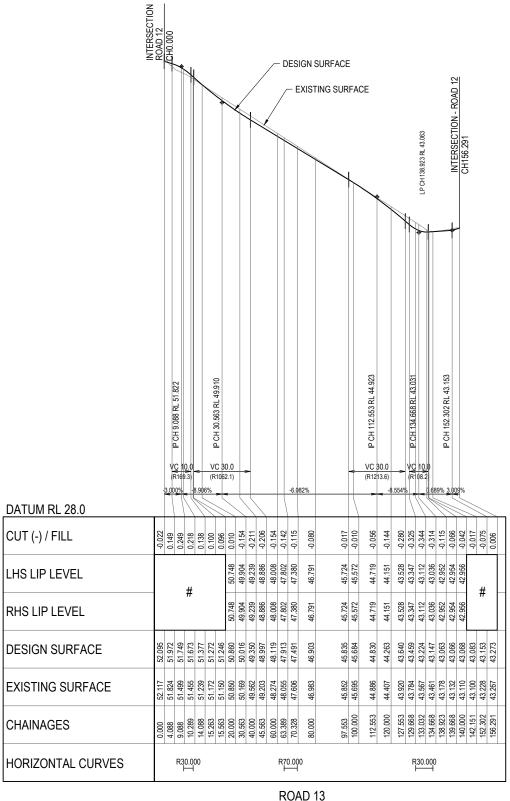
	PROJECT NAME	DRAWING TITLE	DRAWING TITLE					
RIPLEY PROJECTS PTY LTD	HAYFIELD STAGE 5		BULK EARTHWORKS TYPICAL SECTIONS					
TED CONSULTANT		PROJECT No.	DRAWING No.	REV				
SURVEYOR: SURVEY MARK	352 RIPLEY ROAD	17-0195	103					





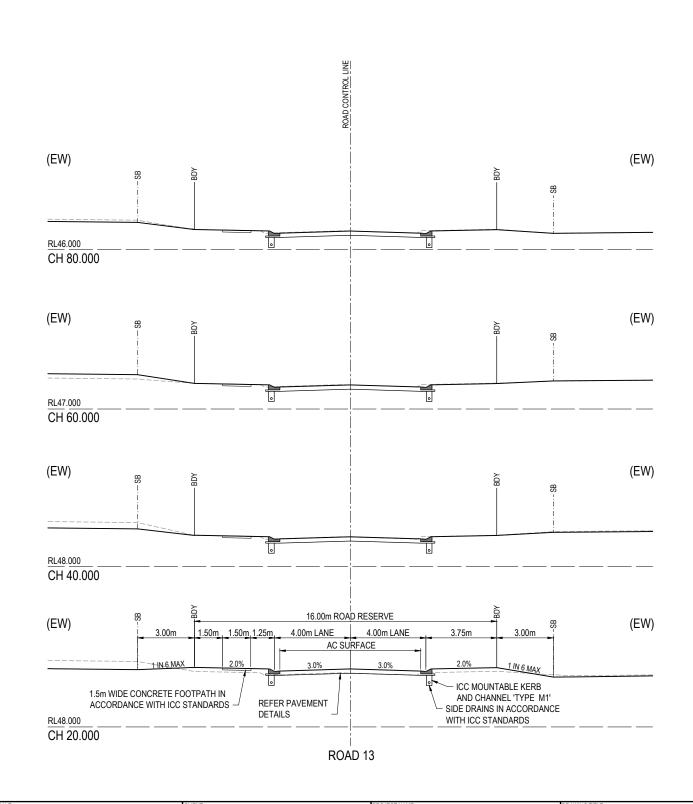
(EW) REFER TO BULK EARTHWORKS DRAWING FOR LOT GRADING AND FINISHED SURFACE LEVELS

1 2	27.04.20 AS 16.06.20 AS	AS AS	FOR APPROVAL FOR APPROVAL	AS	NOT FOR CONSTRUCTION	PEAKURBAN	1:100 1 0 1 2 3 4 5 A1	RIPLEY PROJECTS PTY LTD	HAYFIELD STAGE 5	ROAD 12 CROSS SECTIONS SHEET 2 OF 3		
		1		DESIGN	APPROVED ANDREW NGO RPEQ 12329	DEVELOPMENT ENGINEERS + ADVISORS	1:200 A3			SHEET	2 OF 3	
				МН	FOR AND ON BEHALF OF PEAKURBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU		ASSOCIATED CONSULTANT SURVEYOR: SURVEY MARK PH: (07) 3188 9020	352 RIPLEY ROAD RIPLEY	PROJECT No. 17-0195	DRAWING No.	REVISION 2

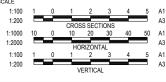


1 2	27.04.20 16.06.20	AS AS	AS I	FOR APPROVAL FOR APPROVAL	AS	NOT FOR CONSTRUCTION	PEAKURBAN	1:100 1 0 1 2 3 4 5 A1	RIPLEY PROJECTS PTY LTD	HAYFIELD STAGE 5	ROAL CROSS SI	ECTIONS	
	-	-			DESIGN	APPROVED ANDREW NGO RPEQ 12329	DEVELOPMENT ENGINEERS + ADVISORS	1:200 A3			SHEET	3 OF 3	
					MH	ANDREW NGO RFEQ 12329			ASSOCIATED CONSULTANT SURVEYOR: SURVEY MARK	352 RIPLEY ROAD	PROJECT No. 17-0195	DRAWING No.	REVISION 2
						FOR AND ON BEHALF OF PEAKURBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU		PH: (07) 3188 9020	RIPLEY	11-0193	103	

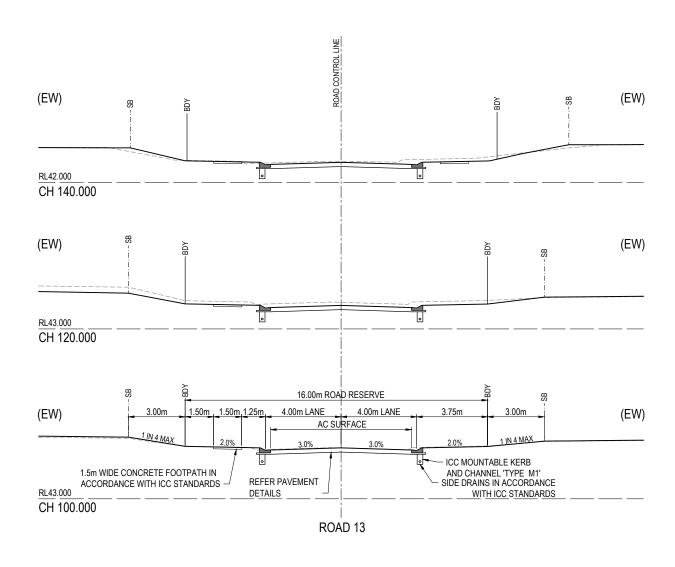
ASSUMED PAVEMENT DETAILS (SUBJECT TO CBR TESTING)


ROAD	ROAD CLASSIFICATION	DESIGN ESAs	ASSUMED CBR	SURFACING	BASE	SUB BASE	LOWER SUB BASE	TOTAL DEPTH
ROAD 13	ACCESS STREET	1.0 x 10 ⁵	3	35mm	125mm	100mm	150mm	410mm

NOTE: THIS PAVEMENT DESIGN IS PRELIMINARY ONLY BASED ON AN ASSUMED CBR. THE CONTRACTOR SHALL SUPPLY THE SUPERINTENDENT WITH SUBGRADE TEST RESULTS NECESSARY FOR FINAL PAVEMENT DESIGN

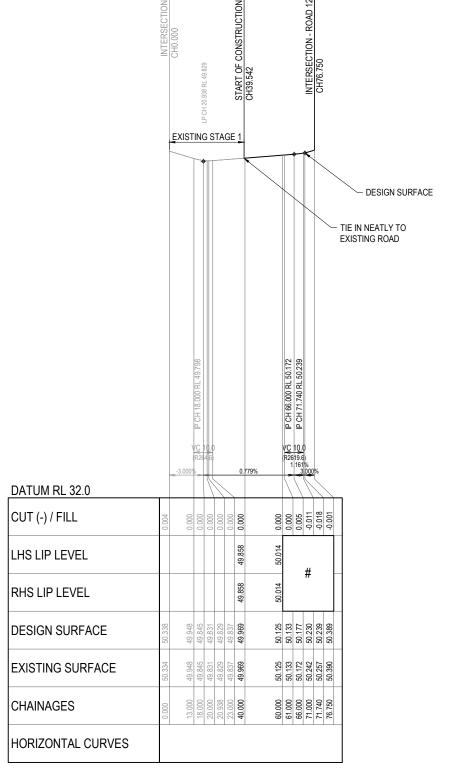

REFER INTERSECTION DRAWINGS FOR LIP LEVELS

(EW) REFER TO BULK EARTHWORKS DRAWING FOR LOT GRADING AND FINISHED SURFACE LEVELS


REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS
	27.04.20	AS	AS	FOR APPROVAL		NOT FOR
2	16.06.20	AS	AS	FOR APPROVAL	AS	
					AS	CONSTRUCTION
						APPROVED
						ANDREW NGO RPEQ 12329
_					MH	
			1			FOR AND ON BEHALF OF PEAKURBAN PTY LTD

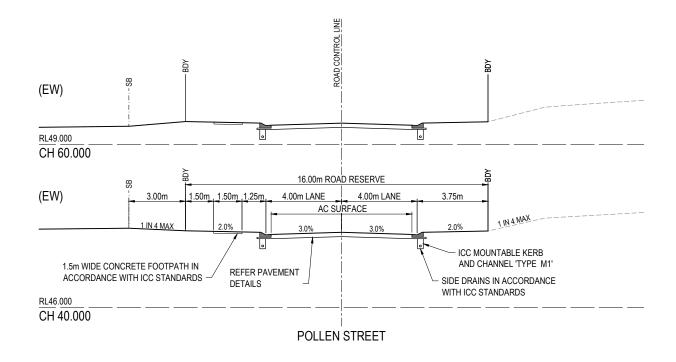
RIPLEY PROJECTS PTY LTD		ROAD 13 LONGITUDINAL SECTION AND CROSS SECTIONS 1 OF 2				
CONSULTANT SURVEYOR: SURVEY MARK	352 RIPLEY ROAD		DRAWING No.	REVISION		
PH: (07) 3188 9020	RIPLEY	17-0195	110	2		

(EW) REFER TO BULK EARTHWORKS DRAWING FOR LOT GRADING AND FINISHED SURFACE LEVELS

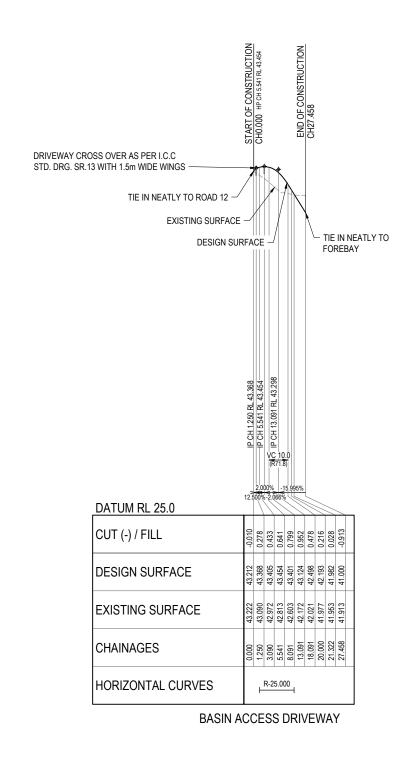


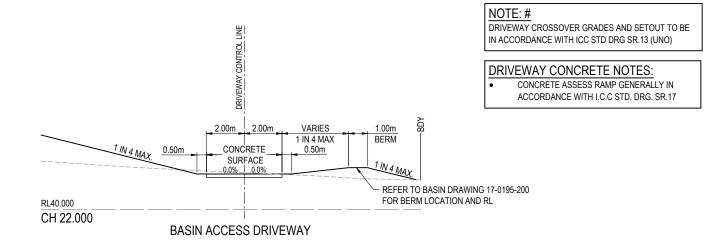
REV	DATE	DESIGN DRA	NN REVISION DETAILS	DRAWN		A	SCALE	CLIENT	PROJECT NAME	DRAWING TITLE		
2	27.04.20 16.06.20	AS AS	FOR APPROVAL FOR APPROVAL	AS	NOT FOR CONSTRUCTION	PEAKURBAN	1:100 1 0 1 2 3 4 5 A1	RIPLEY PROJECTS PTY LTD	HAYFIELD STAGE 5	ROAD 13 LONGIT		
				MH	APPROVED ANDREW NGO RPEQ 12329 FOR AND ON BEHALF OF PEAKURBAN PTY LTD	DEVELOPMENT ENGINEERS + ADVISORS ENQUIRIES@PEAKURBAN.COM.AU	1:200 A3	ASSOCIATED CONSULTANT SURVEYOR: SURVEY MARK PH: (07) 3188 9020	352 RIPLEY ROAD RIPLEY	PROJECT No. 17-0195	DRAWING No.	REVISION 2

ASSUMED PAVEMENT DETAILS (SUBJECT TO CBR TESTING)

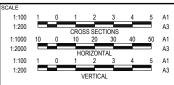

ROAD	ROAD CLASSIFICATION	DESIGN ESAs	ASSUMED CBR	SURFACING	BASE	SUB BASE	LOWER SUB BASE	TOTAL DEPTH
POLLEN STREET	ACCESS STREET	1.0 x 10 ⁵	3	35mm	125mm	100mm	150	410mm

NOTE: THIS PAVEMENT DESIGN IS PRELIMINARY ONLY BASED ON AN ASSUMED CBR. THE CONTRACTOR SHALL SUPPLY THE SUPERINTENDENT WITH SUBGRADE TEST RESULTS NECESSARY FOR FINAL PAVEMENT DESIGN

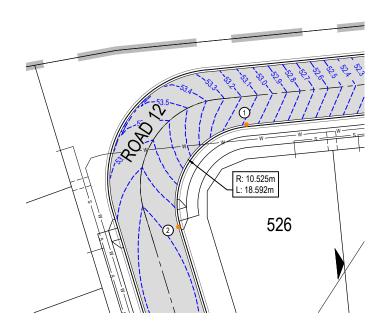


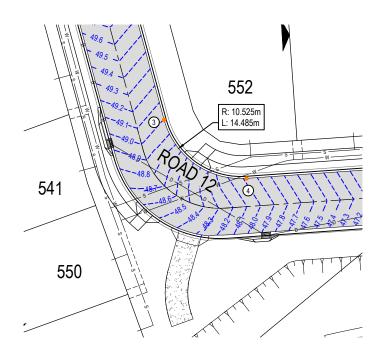

POLLEN STREET
REFER INTERSECTION DRAWINGS FOR LIP LEVELS

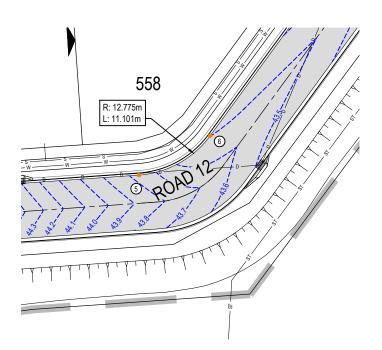
(EW) REFER TO BULK EARTHWORKS DRAWING FOR LOT GRADING AND FINISHED SURFACE LEVELS

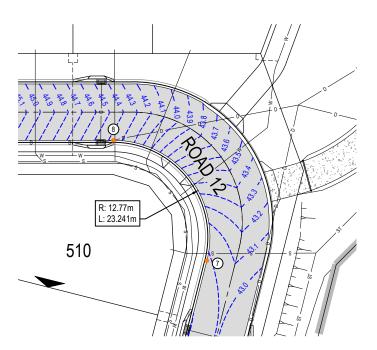

REV DAT 1 27.04 2 16.06	E DESIGN DRAWN 20 AS AS 20 AS AS	REVISION DETAILS FOR APPROVAL FOR APPROVAL	AS	NOT FOR CONSTRUCTION	PEAKURBAN	SCALE 1:100	RIPLEY PROJECTS PTY LTD	PROJECT NAME HAYFIELD STAGE 5	POLLEN STREET LOI SECTION AND CROS		- 1
			MH	APPROVED ANDREW NGO RPEQ 12329 FOR AND ON BEHALF OF PEAKURBAN PTY LTD	DEVELOPMENT ENGINEERS » ADVISORS ENQUIRIES@PEAKURBAN.COM.AU	1:2000 HORIZONTAL A3 1:100 1 0 1 2 3 4 5 A1 1:200 VERTICAL A3	associated consultant SURVEYOR: SURVEY MARK PH: (07) 3188 9020	352 RIPLEY ROAD RIPLEY	PROJECT No. DRAV	AWING No. REV	ision 2

AS FOR APPROVAL AS AS FOR APPROVAL DESIGN DRAWN NOT FOR CONSTRUCTION DESIGN APPROVED AND REVISION DETAILS NOT FOR CONSTRUCTION DESIGN APPROVED AND REVISION REQ 12329 MH






RIPLEY PROJECTS PTY LTD	PROJECT NAME HA ST
SURVEYOR: SURVEY MARK PH: (07) 3188 9020	352 RI
	-


YFIELD TAGE 5	LONG	CCESS DRIVEWAY GITUDINAL AND DSS SECTIONS	Y
	DDO IECT No	DDAWING No.	D

	PROJECT No.	DRAWING No.	REVISION
352 RIPLEY ROAD RIPLEY	17-0195	113	2

ROAD WIDENING SETOUT

NUMBER	EASTING	NORTHING
1	478360.869	6940392.893
2	478352.865	6940378.731
3	478393.195	6940266.824
4	478404.636	6940259.908
5	478485.469	6940271.663
6	478494.472	6940277.547
7	478532.573	6940396.366
8	478519.047	6940411.322

REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS
1	27.04.20	AS	AS	FOR APPROVAL		NOT FOR
2	16.06.20	AS	AS	FOR APPROVAL	7.0	1
					AS	CONSTRUCTION
					DESIGN	APPROVED
						ANDREW NGO RPEQ 12329
_					l	
					MH	
_						FORMUL ON DELIAN E OF DEAVIDED AND DEVI TO
						FOR AND ON BEHALF OF PEAKURBAN PTY LTD

RIPLEY PROJECTS	
PTY LTD	

SURVEYOR: SURVEY MARK
PH: (07) 3188 9020

HAYFIELD STAGE 5

352 RIPLEY ROAD RIPLEY

LEGEND

<u>01</u> •

SP

— PROPOSED ROAD CONTROL LINE PROPOSED KERB INVERT LINE

PROPOSED KERB SETOUT NODE

INDICATIVE DRIVEWAY LOCATION

PROPOSED KERB SETOUT LINE

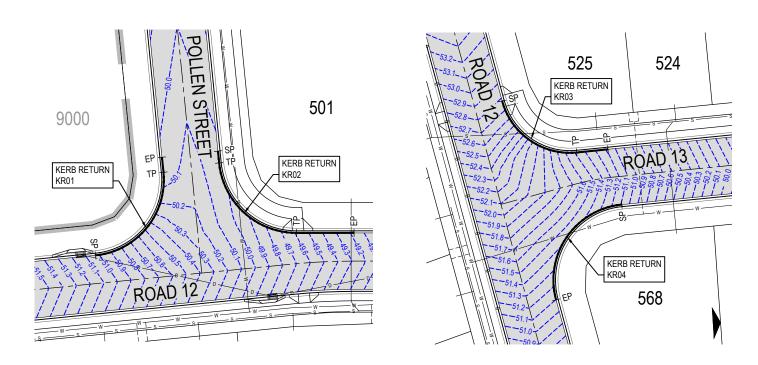
 PROPOSED ROAD CUTBACK LINE EXISTING EDGE OF BITUMEN

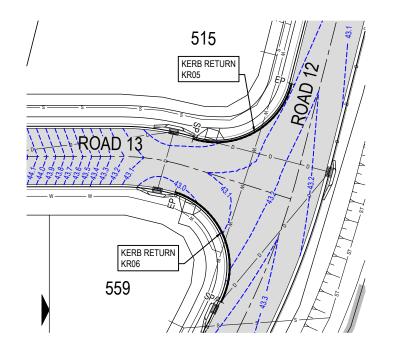
ALL KERB RETURN AND PAVEMENT WIDENING REFERENCE THE LIP OF KERB

UNLESS NOTED OTHERWISE

PROPOSED KERB SETOUT START POINT PROPOSED KERB SETOUT END POINT

PROPOSED SEWER MAIN PROPOSED WATER MAIN EXISTING SEWER MAIN EXISTING WATER MAIN

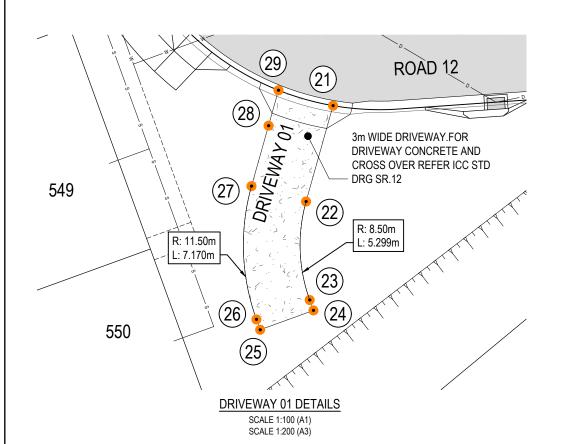

PROPOSED CONCRETE PATH AND PRAM RAMP


-- PROPOSED PAVEMENT CONTOUR (0.1m INTERVAL) PROPOSED STORMWATER DRAINAGE PIPE

> INTERSECTION DETAILS LAYOUT PLAN SHEET 1 OF 2

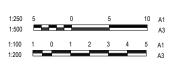
17-0195

2 114



ALL KERB RETURN AND PAVEMENT
WIDENING REFERENCE THE LIP OF KERB
UNLESS NOTED OTHERWISE

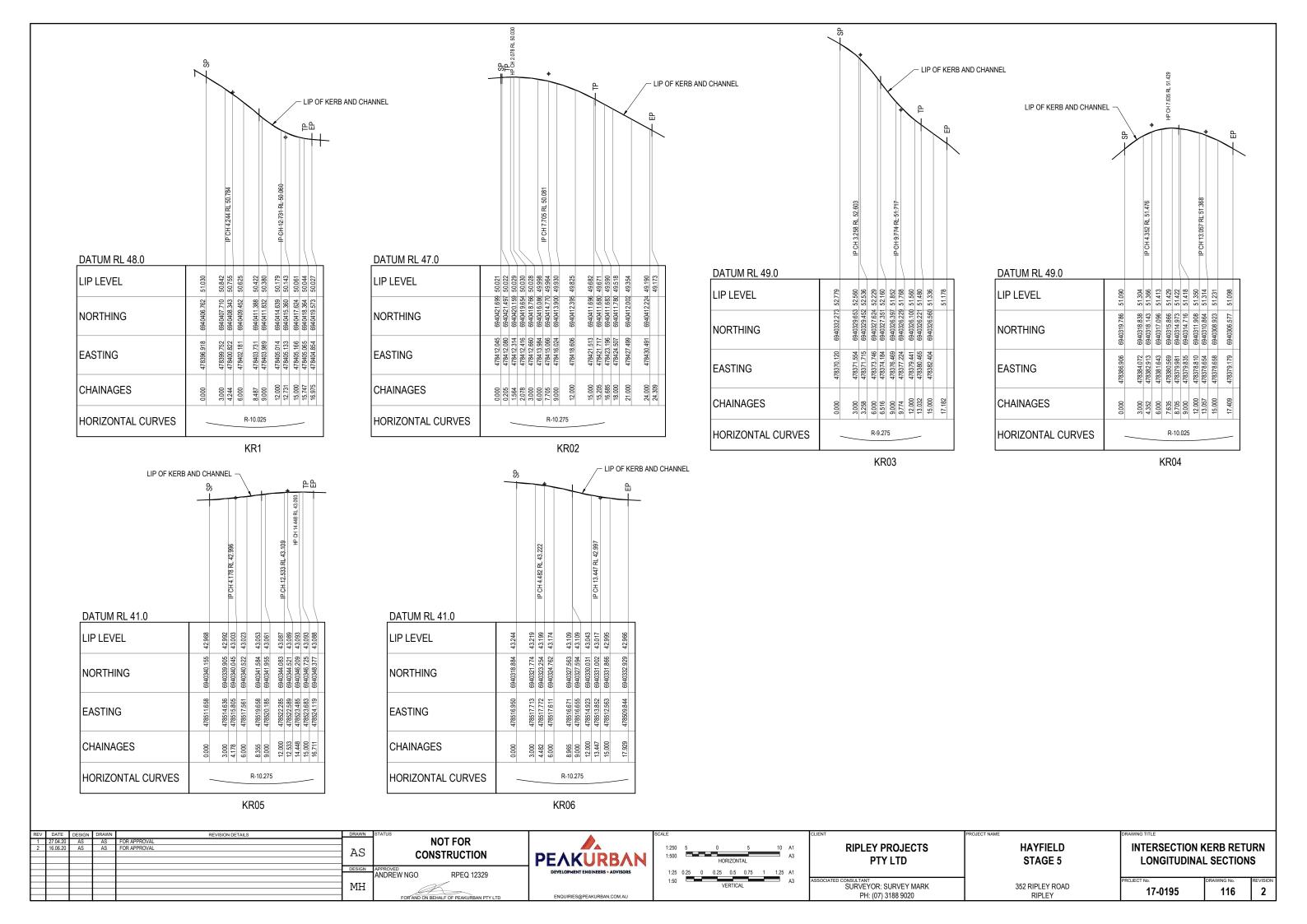
REFER SHEET 114 FOR LEGEND

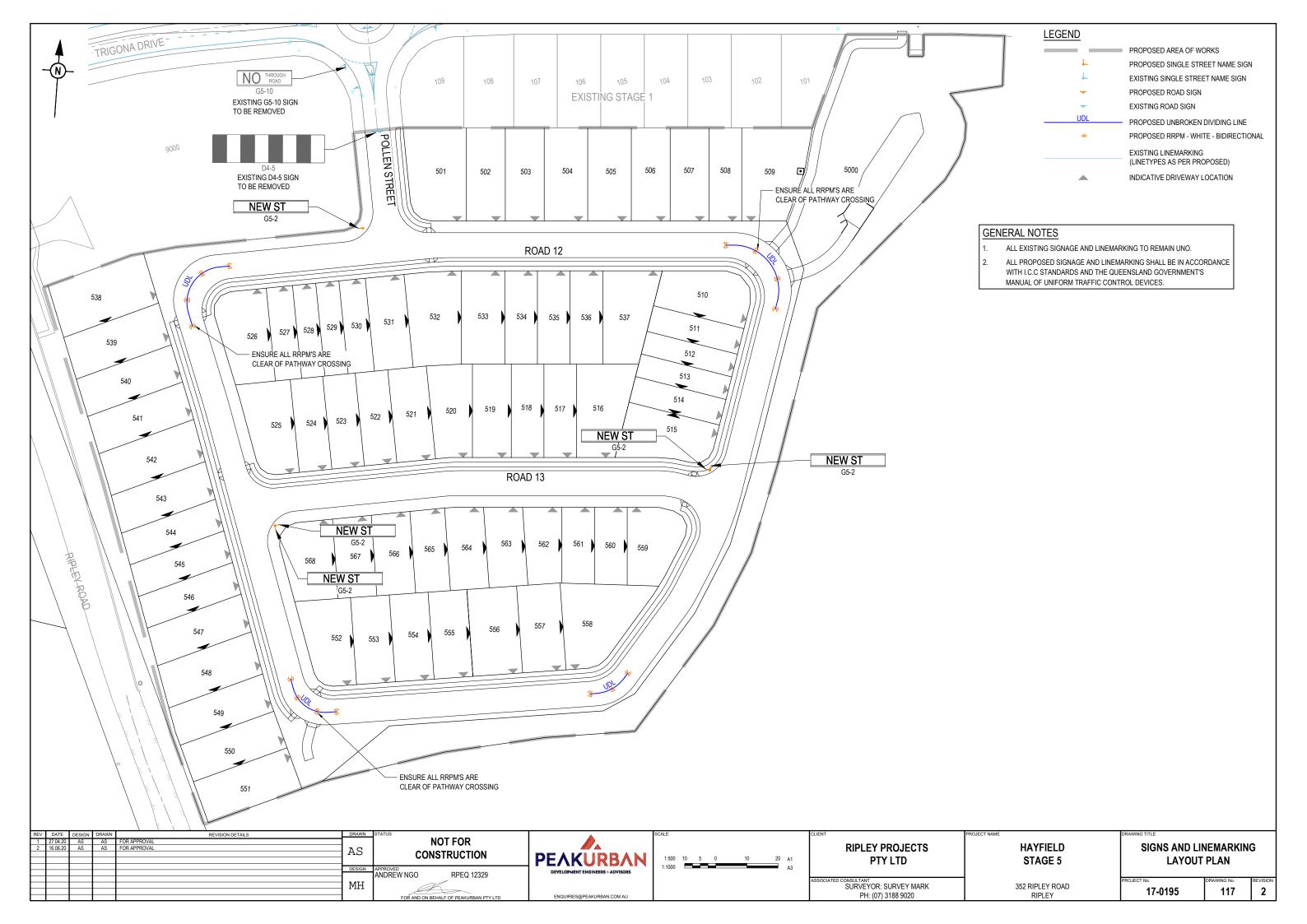


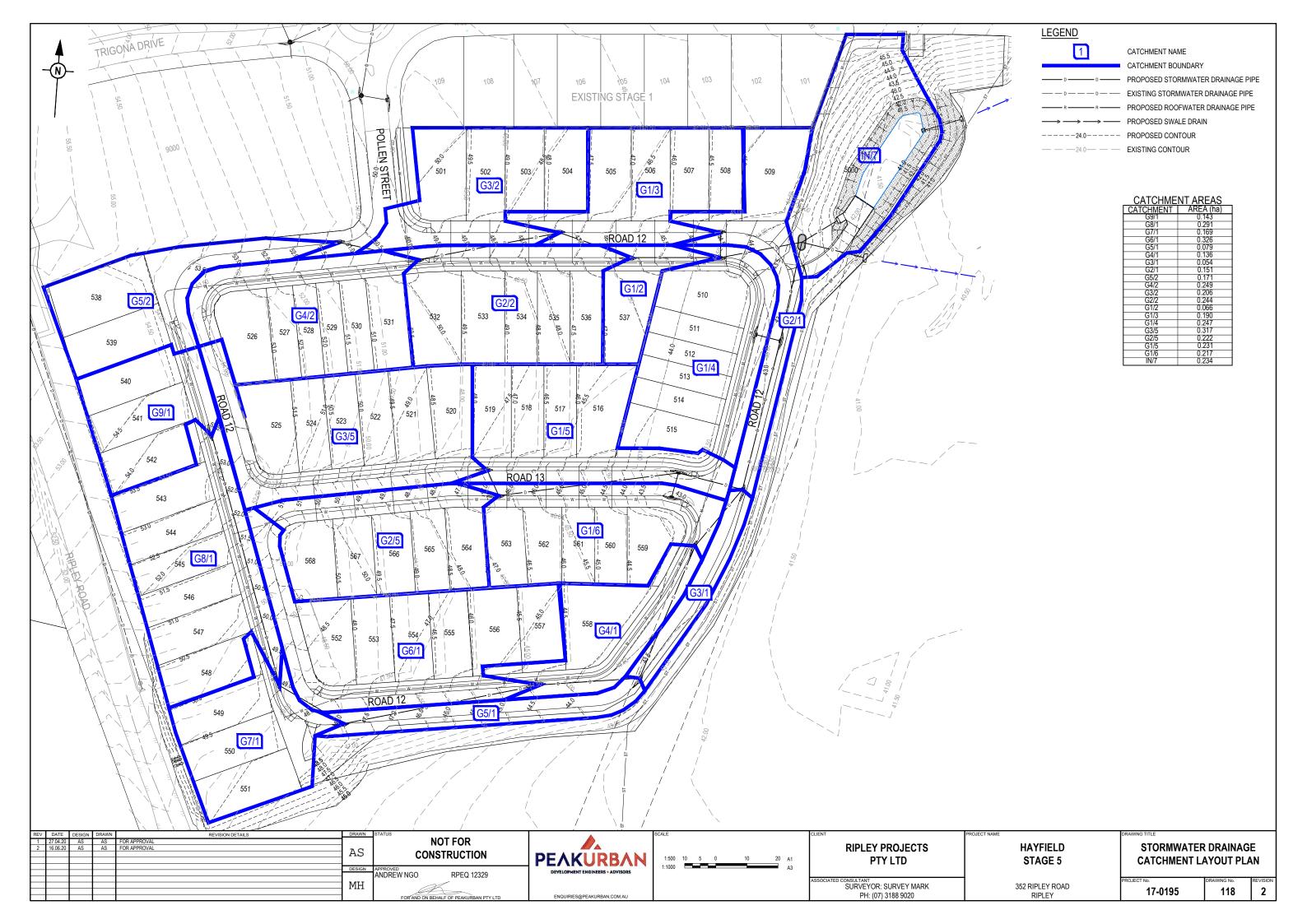
DRIVEWAY 01 SETOUT

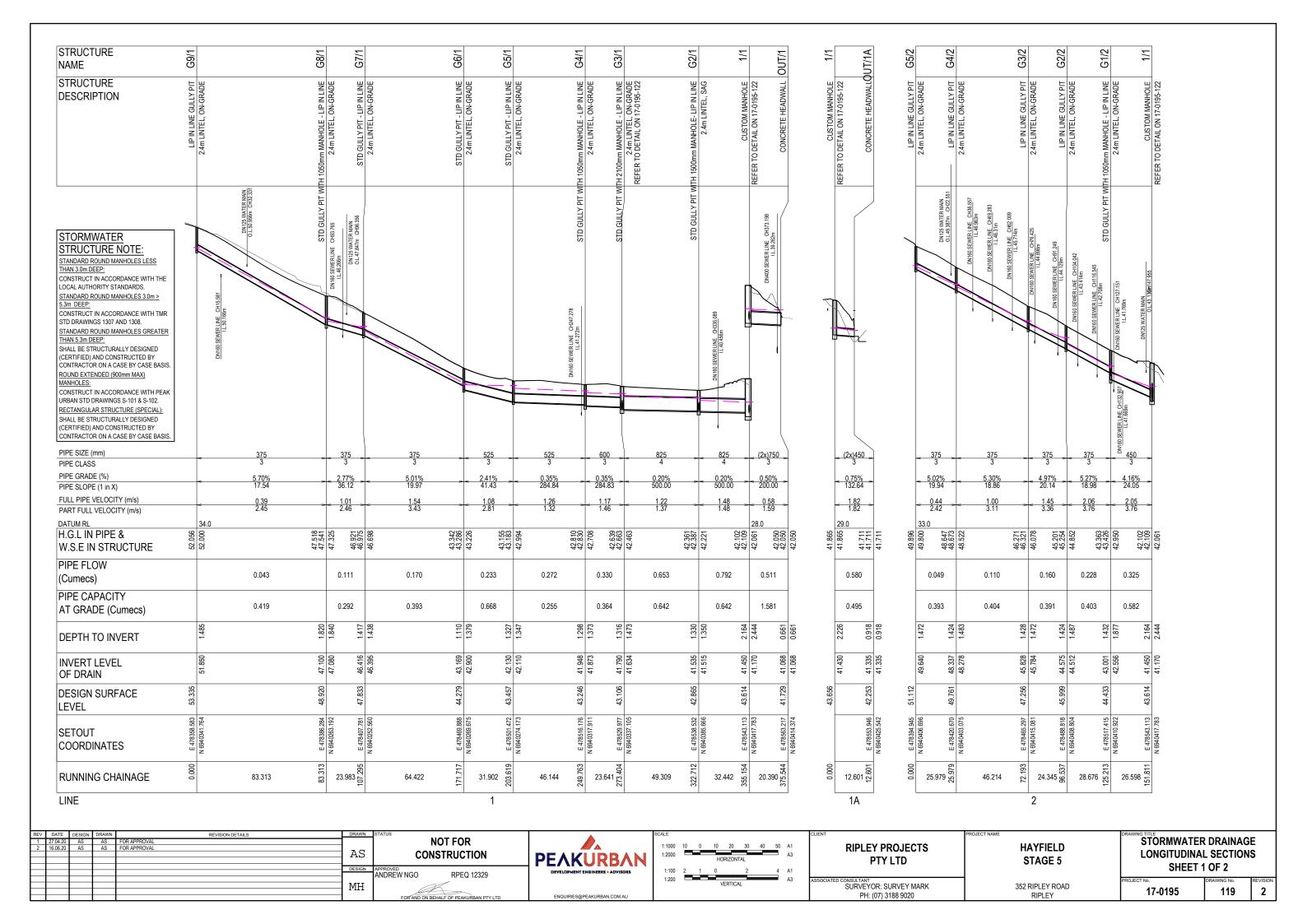
POINT	EASTING	NORTHING
21	478399.203	6940251.738
22	478398.152	6940246.575
23	478398.729	6940241.393
24	478398.969	6940240.861
25	478396.233	6940239.630
26	478395.993	6940240.163
27	478395.213	6940247.174
28	478395.875	6940250.429
29	478396.263	6940252.336

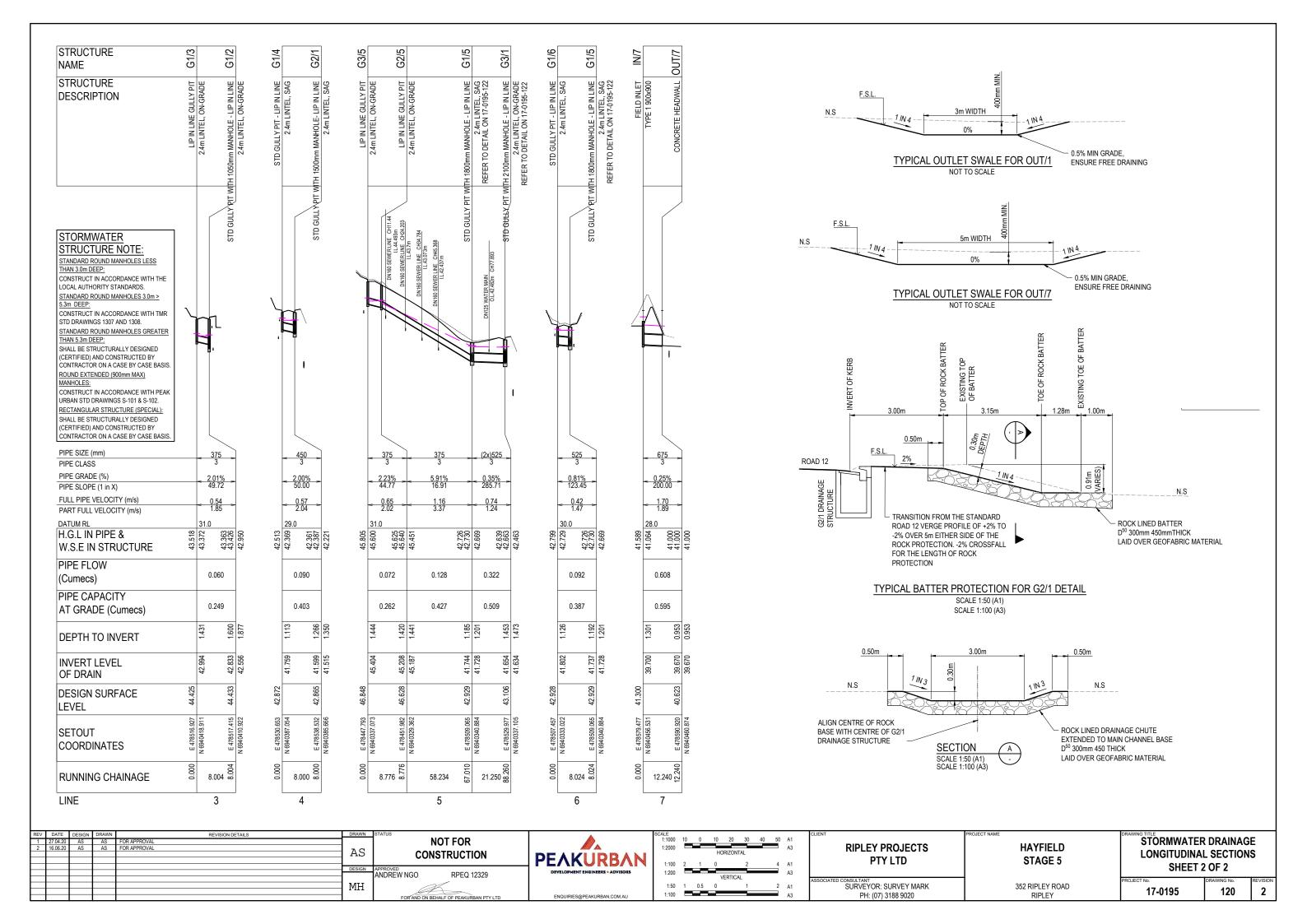
1 2	27.04.20 16.06.20	AS AS	AS AS	FOR APPROVAL FOR APPROVAL	AS	NOT FOR CONSTRUCTION
						APPROVED ANDREW NGO RPEQ 12329 FOR AND ON BEHALF OF PEAKURBAN PTY LTD

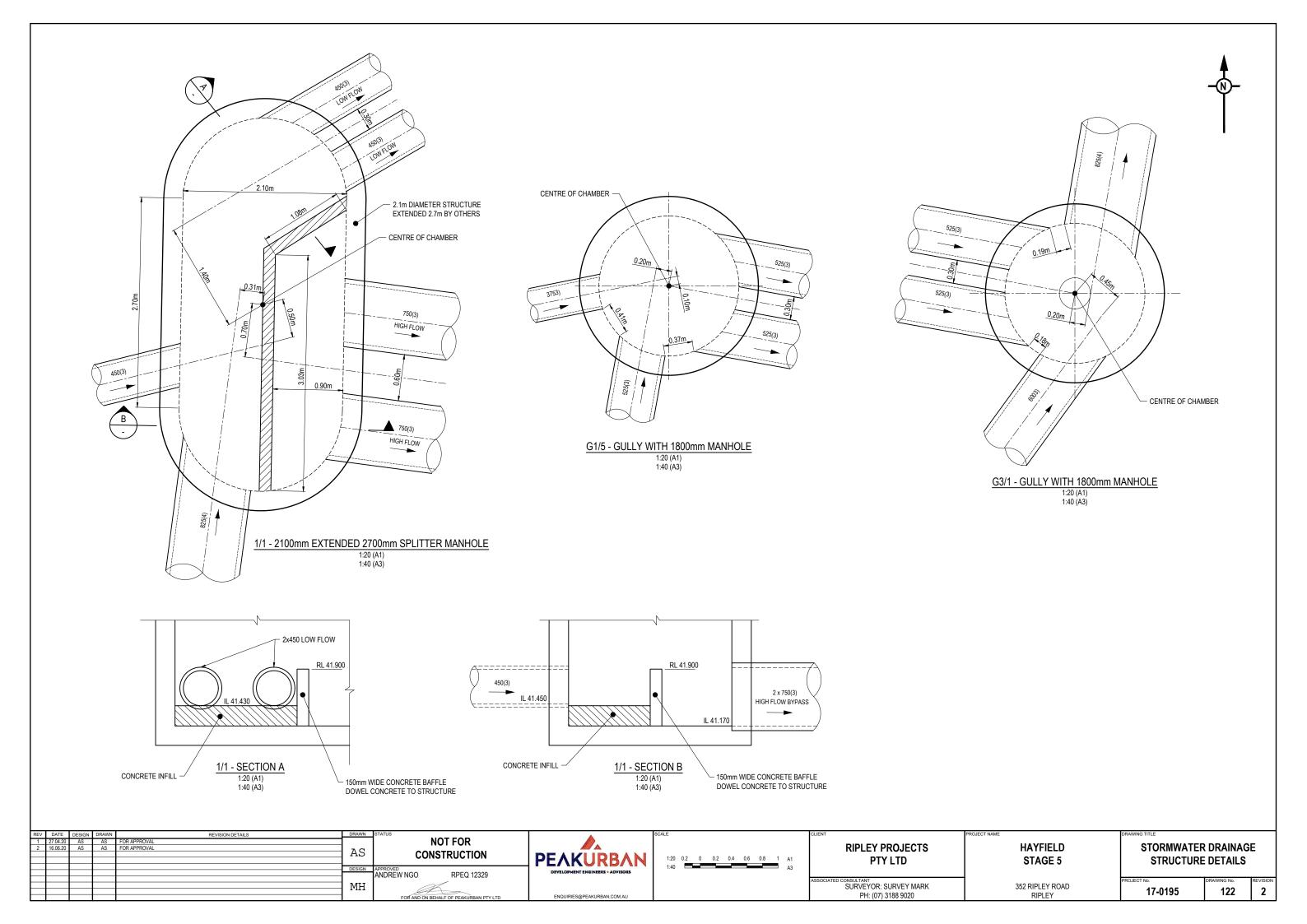


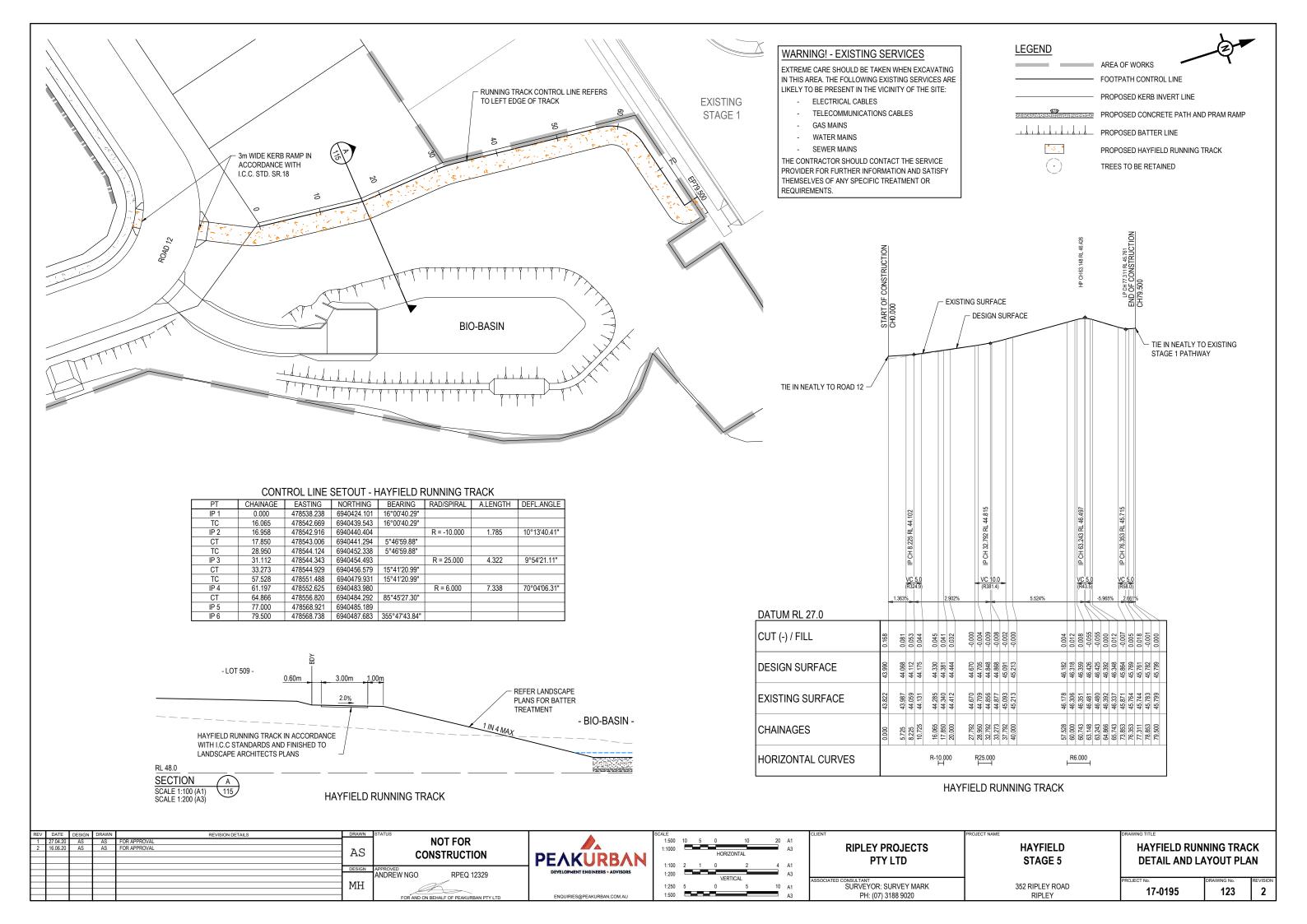


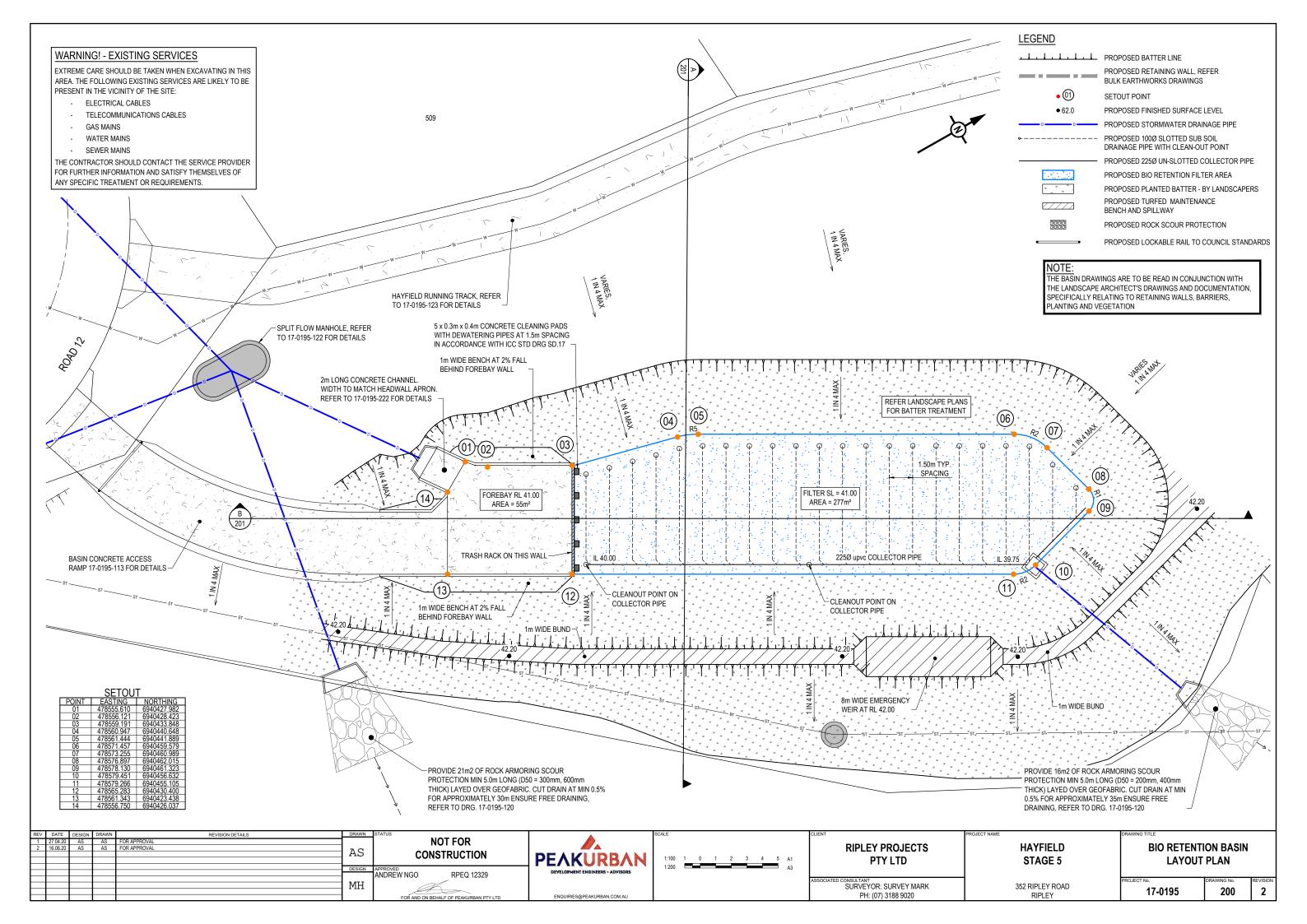

RIPLEY PROJECTS PTY LTD	
ED CONSULTANT SURVEYOR: SURVEY MARK PH: (07) 3188 9020	

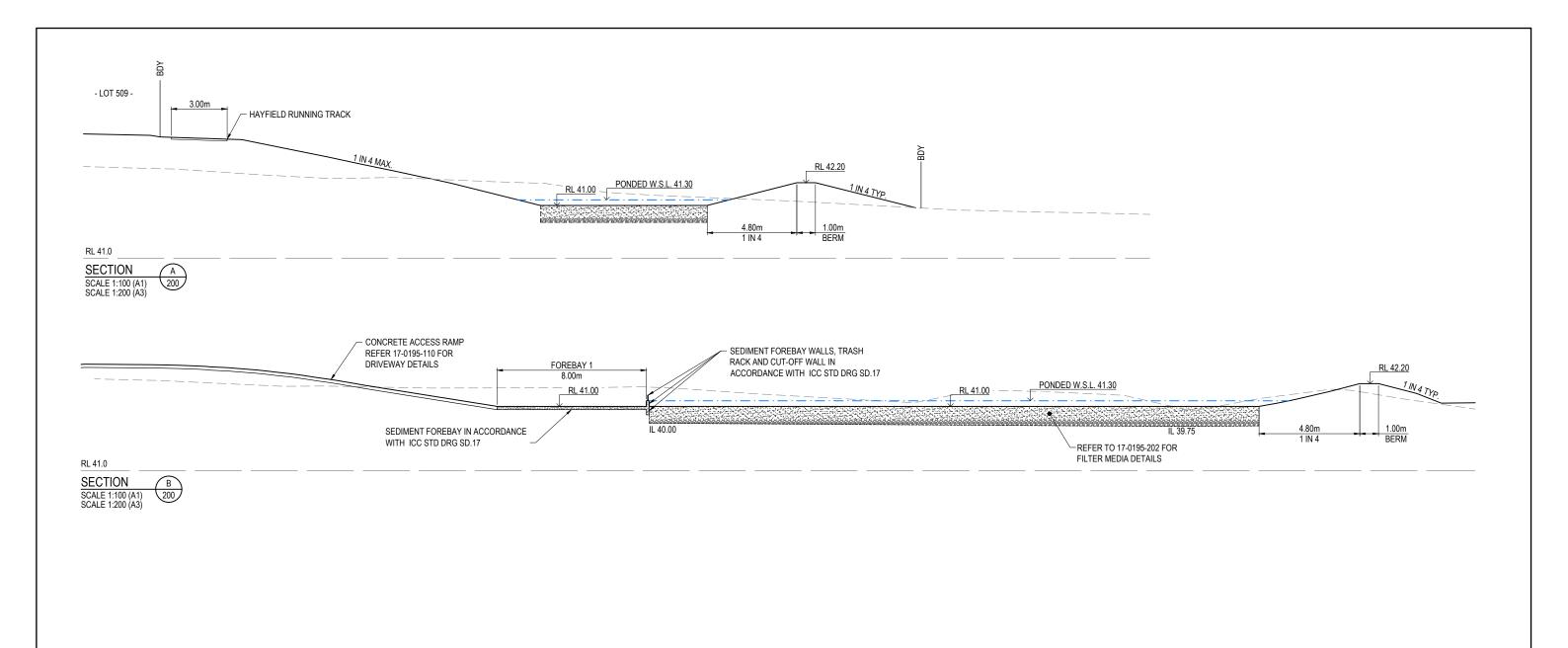

HAYFIELD STAGE 5 INTERSECTION DETAILS LAYOUT PLAN SHEET 2 OF 2


352 RIPLEY ROAD RIPLEY 17-0195 DRAWING No. REVISION 2

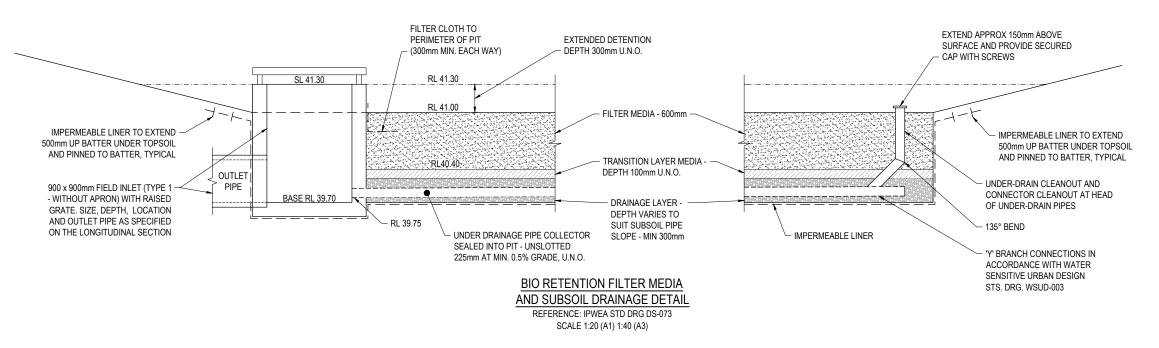


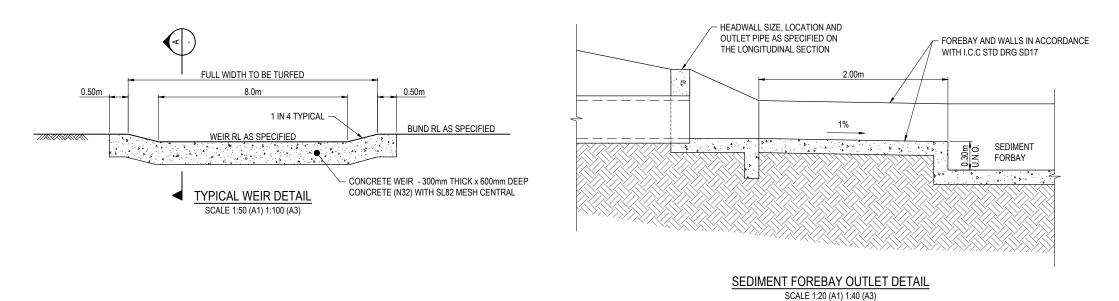


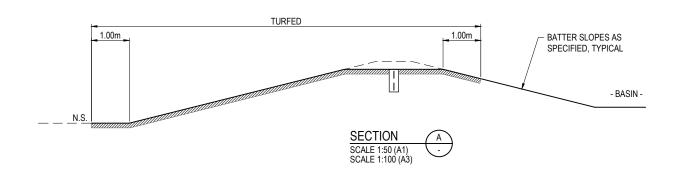



March Marc																																	
Martin	LOCATION		SUB-CATCHMENT RUNOFF											IN DESIGN																GN LEVELS			
5. Supplie 1. Supplie			Tc		Α (CA	Qc	Qa				Qg	Qb Tc	1	CA	Qrat Q	L	S		Qcap Vcap	Vt	V2	2/2g Ku	hu	Kw h	w Sf	hf	dn	Vn				
5. Supplie 1. Supplie	STRUCTURE	DRAIN	SUB-CATCHMENTS	SUB-CATCHMEN	NT RAINFALL S	SUB-CATCHMENT	EQUIVALENT	SUB-CATCHMENT	FLOW IN K&C	HALF ROAD FLOW FLOW	ROAD GRADE ROAD XFA	ALL INLET INLET	FLOW INTO BYPASS BYPA	ASS CRITICA	L RAINF	ALL TOTAL PE	EAK PIPE	REACH PI	IPE PIPE	PIPE CAPA	CITY CAPACITY	TRAVEL CH	ART(S) VELOC	ITY U/S HEAD LO	ss u/s v	v.s.e ch	ANGE PIPE	FRICTION PIPE FRICTIO	N NORMAL NORM	MAL PIPE PIPE	PIPE PIPE	W.S.E GRAT	TE STRUCTURE
State Stat	No.	SECTION	CONTRIBUTING					DISCHILLING.	(INC. BYPASS)		ATINLET ATINLET											VELOCITY US	SED HEAD	COEFFICIEN	T HEAD LOSS C	OEFFICIENT IN	W.S.E SLOP	PE HEAD LOSS	DEPTH DEPT				L No.
See	G9/1	G9/1 to G8/1	111111						48		4 3.6					116 0.125	48 43	83.313	5.7 37	5 3	419 3.7	9 2 G1	L 0.	008	7 0.055	1 /0	0.055	5.38 4.5	31 0.082				334 G9/1
March Marc	G8/1								103	569 2.217 0.079	9 4.47									5 3	292 2.6												
5. State of the control of the contr	G7/1	G7/1 to G6/1	G9/1 G8/1		10 116	0.169	0.147	47	87	594 1.878 0.079	5.48	3 L2B 4G,3.3X	63 24 G5/	1	10.89	112 0.527	195 170	64.422	5.01 37	5 3	393 3.5	5 2 T3/	V/T6 0.	121	.84 0.223	2.28	0.276	5.21 2.9	19 0.173	3.43 46.395 43.169	46.698 43.3	12 46.975 47.8	.33 G7/1
2. State 1.	G6/1	G6/1 to G5/1	G9/1 G8/1 G7/1		10 116	0.326	0.285	92	110	550 2.302 0.081	1 4.32	3 L2B 4G,3.3X	74 37 G4/	1	11.43	109 0.811	294 233	31.902	2.41 52	:5 3	668 3.0	9 2 T1/	./T3 0.	059	0.9 0.053	1.01	0.06	0.22 0.1	51 0.214	2.81 42.9 42.13	43.226 43.1	5 43.286 44.2	279 G6/1
Part																																	
20. 201-201-201-201-201-201-201-201-201-201-	G5/1	G5/1 to G4/1	G9/1 G8/1 G7/1 G6/1		10 116	0.079	0.069	22	51	247 2.164 0.088	8 1.09	3 L2B 1G,3.3X	46 5 G3/	1	11.7	108 0.88	314 272	46.144	0.35 52	:5 3	255 1.1	8 2 T6y	/T9 I	0.08	99 0.161	2.34	0.189	0.4 0.1	34 0.474	1.32 42.11 41.948	42.994 42.	31 43.183 43.4	57 G5/1
20. 2016. 1 20																																	
94 Septiminal Septimin	G4/1	G4/1 to G3/1	G9/1 G8/1 G7/1 G6/1 G5/1		10 116	0.136	0.119	38	83	193 3.089 0.103	3 0.52 2	.05 L2M 1050 0.5G,2.5	X 68 14 LOS	T .	12.08	107 0.999	350 330	23.641	0.35 60	0 3	364 1.2	9 2 T1/	/T3 (0.07	47 0.102	1.75	0.122	0.29 0.0	58 0.448	1.46 41.873 41.79	42.708 42.6	89 42.83 43.2	.24 G4/1
94 Septiminal Septimin																																	
94 Septiminal Septimin																																	
30. Month of the control of the cont				8/1																													
See 1 Sept. 1	G3/1	G3/1 to G2/1	G7/1 G6/1 G5/1 G4/1		10 116	0.054	0.047	15	23	178 1.789 0.077	7 0.48	3 L2B 1800 0.5G,3.3	X 21 2 G2/	1	12.28	106 1.908	670 653	49.309	0.2 82	:5 4	642 1	2 2 176/	i/T9 0.	.076	2.31 0.176	2.62	0.199	0.21 0.1	0.69	1.37 41.634 41.535	42.463 42.3	51 42.663 43.1	06 G3/1
90 90 90 90 90 90 90 90 90 90 90 90 90 9																																	
90																																	
See 1 Sept. 1			G1/AG1/6G3/5G3/5G1/5G	0/1																													
Property of the control of the con	G2/1	G2/1 to 1/1			10 116	0.151	0.132	42	71	295 0.044	0.31	3 SL2B 1500	71 0		12.69	105 2.255	781 792	32.442	0.2 82	.5 4	642 1.	2 2 T1/	/T3 0.	112	1.25 0.14	1.48	0.166	0.37 0.0	98 0.825	1.48 41.515 41.45	42.221 42.1	2 42.387 42.8	365 G2/1
Property of the control of the con																																	
19. \$\text{U1.}\$ \text{U1.}\$ \																																	
11 12 13 14 15 15 15 15 15 15 15																																	
11 12 13 14 15 15 15 15 15 15 15																																	
11 12 13 14 15 15 15 15 15 15 15																																	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																	
01/03/04/03/03/03/03/03/03/03/03/03/03/03/03/03/																																	
Second Continue	1/1	1/1 to OUT/1	G2/1									CHAMBER			12.96	104 3.238	534 511	20.39	0.5 (2x)75i	0 3	1581 1.7	9 2 T9/	/T10 0.	017	2.44 0.042	2.8	0.048	0.05 0.0	11 0.294	1.59 41.17 41.068	42.061 42.	5 42.109 43.6	s14 1/1
Second Control Seco																																	
Second Control Seco																																	
Second Control Seco																																	
Second Control Seco																																	
Second Control Seco			61/3 65/2 64/2 63/2 62/2 61	1/2																													
0.071 0.07																																	
1/1			G8/1 G7/1 G6/1 G5/1 G4/1 G3	3/1																													
00T/1A 00T		1/14 to OUT/14	G2/1													151 0	500 500	12 601	0.75 (24)/(5)	0 3	AOS 1.5	6 2		3 17			0	1.22 0.1	15 0.45	1 92 /1 /2 /1 225	A1 965 A1 7		
65/2 65/2 65/2 10 116 0.17 0.18 45 56 7 150 0.07 5.47 3 12M 65.38 46 9 1/8P3 10 116 0.18 56 2 12 65/2 10 0.16 0.28 0.17 7 0.86 65/2 10 116 0.28 0.17 7 0.86 65/2 10 116 0.28 0.17 7 0.86 65/2 10 116 0.28 0.17 7 0.86 65/2 10 116 0.28 0.17 7 0.86 65/2 10 116 0.28 0.17 7 0.86 65/2 10 116 0.28 0.17 7 0.86 65/2 10 116 0.28 0.18 58 70 67/1 1820 0.07 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.07 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.07 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.07 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.07 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.07 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.07 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.08 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.08 5.47 3 12M 65.38 63 21 63/2 10 116 0.28 0.18 58 70 67/1 1820 0.08 5.47 3 12M 65.38 63/2 10 12 63	OUT/1A	4/ 1A 10 001/ 1A													_	131 0	300 380	12.001	J./J (2X/45)	7	1.5	4		v. ±1	7 0			1.22 0.1	0.43	1.02 41.43 41.335	41.7		
62/2 62/2 62/2 62/2 62/2 62/2 62/2 62/2	G5/2								58			3 L2M 4G,3.3X												DIOR								17 49.896 51.1	112 G5/2
G/2 G/2 to G/2	G4/2								8/													6 2 G1		051 2	2.46 0.125								
G1/2 G1/2 to 1/1 G1/3 G5/2 G4/2 G3/2 G2/2 10 116 0.066 0.058 19 53 627 1.628 0.062 5.47 3 L2M 1050 46,3 3X 46 7 G1/4 11.04 111 0.982 359 325 26.598 4.16 450 3 582 3.66 2 T6/7 9 0.214 1.93 0.413 2.23 0.476 3.19 0.882 0.241 3.76 42.596 42.40 4.43 G1/2 G1/4 G1/4 G1/4 G1/4 G1/4 G1/4 G1/4 G1/4	G3/2	G5/2 TO G2/2	03/2 04/2		10 116	0.206	0.18	58	/(0.06	5.4/	5 LZIVI 4G,3.3X	36 14 G1/	3	10.6	113 0.546	204 160	24.545	4.9/ 3/	3 3	3.5	4 2 13/	y 10 0.	107	1.6 0.193	2.2/	U.243	3.6 0.9	(1 0.16/	3.36 45.784 44.575	40.078 45.2	1 46.321 47.2	33 03/2
61/3 61/3 61/3 61/3 61/3 61/3 61/3 61/3	G2/2	G2/2 to G1/2	G5/2 G4/2 G3/2		10 116	0.244	0.213	69	103	627 2.133 0.076	5.47	3 L2M 4G,3.3X	73 30 G1/	2	10.8	112 0.759	281 228	28.676	5.27 37	75 3	403 3.6	5 2 T1/	/T3 0.	217	1.61 0.35	1.85	0.403	5.19 1.5	0.202	3.76 44.512 43.001	44.852 43.3	3 45.254 45.9	198 G2/2
61/3 61/3 61/3 61/3 61/3 61/3 61/3 61/3					1 T																				T								
61/3 61/3 61/3 61/3 61/3 61/3 61/3 61/3	G1/2	G1/2 to 1/1	G1/3 G5/2 G4/2 G3/2 G2/2		10 116	0.066	0.058	19	5:	627 1.628 0.067	5.47	3 L2M 1050 4G 3 3X	46 7 61/	4	11.04	111 0.982	359 325	26,598	4.16 45	io 3	582 3.6	5 2 T6	o et/s	214	93 0.413	2.23	0.476	3.19 0.8	32 0.241	3.76 42.556 41 45	42.95 42.1	2 43.426 44	.43 G1/2
63/5 63/5 63/5 65/5 63/5 65/5 63/5 65/5 63/5 65/5 63/5 65/5 65	G1/3	G1/3 to G1/2				0.19	0.166	53	78	627 1.909 0.07	7 5.47	3 L2M 4G,3.3X	60 18 G2/	1								5 2 G2	2 0.	015	9.7 0.146		0.146	0.12 0.0	0.125	1.85 42.994 42.833	43.372 43.3	3 43.518 44.4	425 G1/3
62/5 62/5 62/5 62/5 63/5 65 10 16 0.22 0.194 63 75 661 1.84 0.068 6.08 3 LM 65.33 57 19 61/6 1.007 116 0.471 181 128 85.234 5.91 3.75 3 4.27 3.86 2 TS/T10 0.068 2.55 0.174 2.78 0.189 4.68 2.778 0.141 3.37 65.187 4.744 45.451 42.726 45.69 42.652 62/5 1.007 1.	G1/4								90						10	116 0.216	83 90	8															
G1/5 G1/5 G3/1 G1/6 G3/5 G2/5 10 116 0.231 0.201 65 113 260 0.082 0.61 1.3 SL2M 1800 SAG 113 0 G1/4 1.0.56 113 0.862 322 21.25 0.35 [2/3/52 5 3 5.09 1.18 2 T6/79 0.028 1.99 0.056 2.15 0.061 0.14 0.03 0.303 1.24 47.28 41.654 42.669 42.639 42.73 42.729 61.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0			G3/5						70																								
	02/3	52/3 (0 02/3	100,0		110	0.222	0.134		/-	001 1.04 0.000	0.00	5 LEIVI 003,5.5A	3, 13 (1)	•	20.07	220 0.471	201 120	30.234	5.51 3/		/ 3.0	2 13/	, . 20 0.		0.1/4	2.70	5.105	4.00 2.7	0.171	3.37 43.107 41.744	.5.451 42.7.	.0, 43.04 40.0	52/3
1N/7 1N/7 to OUT/7 10 116 0.234 0.179 58 608 310 0.5 F99T1 608 0 10 116 0.179 608 608 12.24 0.5 675 3 595 1.66 2 G1 0.147 3.57 0.525 0.525 0.52 0.064 0.568 1.89 39.8 39.739 41.064 41 41.589 42 IN/7	G1/5		G1/6 G3/5 G2/5						113		0.02																	0.0.					
	G1/6													5																			
		IN// to UUI//			10 116	0.234	0.179	58	608	310 0.5			808 0		10	110 0.179	508 608	12.24	0.5 6/	3 3	395i 1.6	5 ZG1	. 0.	.147	0.525		U.525	0.52 0.0	24 U.568	1.89 39.8 39.739			
														,							1							,					

R	1 27.04.20 2 16.06.20	DESIGN D AS	AS AS	REVISION DETAILS FOR APPROVAL FOR APPROVAL	AS	NOT FOR CONSTRUCTION	PEAKURBAN	RIPLEY PROJECTS PTY LTD	HAYFIELD STAGE 5	STORMWATER DRAINAGE CALCULATIONS TABLE			
					DESIGN	ANDREW NGO RPEQ 12329	DEVELOPMENT ENGINEERS * ADVISORS			SHEET 1 OF 1			
					MH			ASSOCIATED CONSULTANT SURVEYOR: SURVEY MARK	352 RIPLEY ROAD	PROJECT No. 17-0195	DRAWING No.	REVISION	
						FOR AND ON BEHALF OF PEAKURBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU	PH: (07) 3188 9020	RIPLEY	17-0193	121		







RE	V DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	SIAIUS	A	SCALE	CLIENI	PROJECT NAME	DRAWING TITLE		
_ 1	27.04.20	AS	AS	FOR APPROVAL		NOT FOR CONSTRUCTION	PEAKURBAN	(URBAN 1:100 1 0 1 2 3 4 5 A1	RIPLEY PROJECTS PTY LTD		BIO RETENTION BASIN TYPICAL SECTIONS		- 1
2	16.06.20	AS	AS	FOR APPROVAL	7.0					HAYFIELD			- 1
					AS					STAGE 5			
					DESIGN	APPROVED		1:200 A3	1=.=		'''''		
					DEGIGIT	ANDREW NGO RPEQ 12329	DEVELOPMENT ENGINEERS • ADVISORS				1		
									ASSOCIATED CONSULTANT	1	PROJECT No.	DRAWING No.	REVISION
					MH				SURVEYOR: SURVEY MARK	352 RIPLEY ROAD		l	1 _ 1
					1-111		ENQUIRIES@PEAKURBAN.COM.AU				17-0195	201	121
						FOR AND ON BEHALF OF PEAKURBAN PTY LTD			PH: (07) 3188 9020	RIPLEY			

NOT FOD

REV DATE DESIGN DRAWN

NOTES:

- BIORETENTION SYSTEM SURFACE. SURFACE LEVEL IS TOP OF FILTER MEDIA. SURFACE TO BE MULCHED AND PLANTED AS PER PROJECT DRAWINGS AND THE 'BIORETENTION TECHNICAL DESIGN GUIDELINES' (WATER BY DESIGN).
- 2. FILTER MEDIA SPECIFICATION SHALL BE IN ACCORDANCE WITH THE 'ADOPTION GUIDELINES FOR STORMWATER BIOFILTRATION SYSTEMS (CRC FOR WATER SENSITIVE CITIES) AND THE BIORETENTION TECHNICAL DESIGN GUIDELINES (WATER BY DESIGN). BIORETENTION HYDRAULIC CONDUCTIVITY SHALL BE IN ACCORDANCE WITH PRACTICE NOTE 1: IN SITU MEASUREMENT OF HYDRAULIC CONDUCTIVITY' (FAWB). THE NUMBER OF SAMPLES TO BE TESTED SHALL BE IN ACCORDANCE WITH THE 'CONSTRUCTION AND ESTABLISHMENT GUIDELINES SWALES, BIORETENTION SYSTEMS AND WETLANDS' (WATER BY DESIGN).
- CONSTRUCTION TOLERANCES SHALL BE IN ACCORDANCE WITH THE 'CONSTRUCTION AND ESTABLISHMENT GUIDELINES -SWALES, BIORETENTION SYSTEMS AND WETLANDS' (WATER BY DESIGN)
- 4. TRANSITION LAYER AND DRAINAGE LAYER DEPTHS VARY WITH DESIGN. DEPTHS AND SPECIFICATION TO BE IN ACCORDANCE WITH PROJECT DRAWINGS AND THE 'BIORETENTION TECHNICAL DESIGN GUIDELINES' (WATER BY DESIGN)
- UNDERDRAIN TO BE SLOTTED RIGID PIPE LAID AT 0.5% GRADE. REFER TO
 PROJECT DRAWINGS FOR DIAMETER AND PIPE INVERT. PIPE SHOULD NOT BE
 INSTALLED WITH A FILTER SOCK SURROUNDING PIPE. UNDERDRAIN PIPES
 SHALL BE SEALED INTO PITS USING GROUT OR OTHER APPROVED WATERTIGHT
 SEAL
- 6. LINER (AS SPECIFIED ON THE PROJECT DRAWINGS):
- 6.1. PERMEABLE LINER: NON-WOVEN GEOTEXTILE FILTER CLOTH TO BASE AND SIDES OF BIORETENTION SYSTEM. FILTER CLOTH NOT TO BE PLACED BETWEEN ANY FILTER LAYERS. REFER 'BIORETENTION TECHNICAL DESIGN GUIDELINES' (WATER BY DESIGN)
- 6.2. IMPERMEABLE LINER: COMPACTED CLAY OR SYNTHETIC LINER WITH PERMEABILITY OF NO GREATER THAN 1 X 10⁹ m/s. IMPERMEABLE LINER TO BE SEALED AROUND ALL PROTRUSIONS. SYNTHETIC LINERS TO BE INSTALLED AND SEALED IN ACCORDANCE WITH MANUFACTURERS REQUIREMENTS. REFER 'BIORETENTION TECHNICAL DESIGN GUIDELINES' (WATER BY DESIGN).
- 7. UNDERDRAIN OUTLET RISER ESTABLISHES MAX SATURATED ZONE WATER LEVEL. UNDERDRAIN OUTLET RISER AS PER PROJECT DRAWINGS AND 'BIORETENTION TECHNICAL DESIGN GUIDELINES' (WATER BY DESIGN)
- VEGETATED BATTER. SLOPE AND PLANTING TO BE IN ACCORDANCE WITH PROJECT DRAWINGS AND 'BIORETENTION TECHNICAL DESIGN GUIDELINES' (WATER BY DESIGN)
- INSPECTION/CLEANOUT POINT. VERTICAL SOLID PIPE SECTION ATTACHED TO THE END OF EACH UNDERDRAIN IN ACCORDANCE WITH PROJECT DRAWINGS AND THE 'BIORETENTION TECHNICAL DESIGN GUIDELINES' (WATER BY DESIGN)
- FILTER CLOTH TO BE FIXED TO PERIMETER OF PIT TO AVOID RUNNELLING OF WATER BETWEEN PIT AND SOIL INTERFACE. BEGIN FILTER CLOTH 100 ABOVE SURFACE. EXTEND TO 100 BELOW SURFACE. CONTINUE 300 HORIZONTALLY INTO FILTER MEDIA.

ESTABLISHMENT NOTES:

- BASIN DRAINAGE LAYERS AND FILTER TO BE CONSTRUCTED AND TEMPORARILY PROTECTED USING GEOTEXTILE PLACED OVER FILTER WITH 75mm TOPSOIL AND TURFED PRIOR TO CIVIL ON-MAINTENANCE. BASIN TO BE KEPT IN THIS PROTECTED STATE FOR A 24 MONTH MAINTENANCE PERIOD TO ALLOW FOR SUBSTANTIAL CONSTRUCTION WORK.
- PRIOR TO OFF MAINTENANCE INSPECTION, 3 IN-SITU FILTRATION TESTS ARE TO BE PROVED DEMONSTRATING THAT THE HYDRAULIC CONDUCTIVITY IS MET AT 200mm/hr.
- PLANTING OF FILTER TO OCCUR ONLY AFTER SUCCESSFUL INFILTRATION
 TESTS AND COUNCIL ACCEPTANCE OF CIVIL WORKS 'OFF MAINTENANCE'.
 PLANTING ON FILTER SUBJECT TO FURTHER 12 MONTHS MAINTENANCE PERIOD.

NOTE

- FOR DESIGN AND CONSTRUCTION NOTES REFER TO IPWEA STANDARD DRAWING DS-078.
- DRAWINGS TO BE READ IN CONJUNCTION WITH SITE BASED STORMWATER MANAGEMENT PLAN AND LANDSCAPE ARCHITECT'S PLANS

2	16.06.20	AS	AS	FOR APPROVAL	AS	CONSTRUCTION	PEAKURBAN	1:20 0.2 0 0.2 0.4 0.6 0.8 1 A1 1:40 A3	RIPLEY PROJECTS PTY LTD	HAYFIELD STAGE 5	BIO RETENTION TYPICAL NOTES, SECTIONS AND DETAILS		
			+		DESIGN	ANDREW NGO RPEQ 12329	DEVELOPMENT ENGINEERS + ADVISORS	1:50 1 0.5 0 1 2 A1 1:100 A3	ASSOCIATED CONSULTANT		PROJECT No	DRAWING No	REVISION
					MH	FOR AND ON BEHALF OF PEAKURBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU		SURVEYOR: SURVEY MARK PH: (07) 3188 9020	352 RIPLEY ROAD RIPLEY	17-0195	202	2